找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; First International Alessandro Crimi,Bjoern Menze,Heinz Hand

[復(fù)制鏈接]
查看: 44322|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:39:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
期刊簡(jiǎn)稱First International
影響因子2023Alessandro Crimi,Bjoern Menze,Heinz Handels
視頻videohttp://file.papertrans.cn/191/190321/190321.mp4
發(fā)行地址Includes supplementary material:
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; First International  Alessandro Crimi,Bjoern Menze,Heinz Hand
影響因子.This bookconstitutes the thoroughly refereed post-workshop proceedings of theInternational Workshop on Brain Lesion (BrainLes), Brain Tumor Segmentation (BRATS) andIschemic Stroke Lesion Segmentation (ISLES), held in Munich, Germany, onOctober 5, 2015, in conjunction with the International Conference on Conferenceon Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015...The 25papers presented in this volume were carefully reviewed and selected from 28submissions. They are grouped around the following topics: brain lesion imageanalysis; brain tumor image segmentation; ischemic stroke lesion imagesegmentation..
Pindex Conference proceedings 2016
The information of publication is updating

書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries影響因子(影響力)




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries影響因子(影響力)學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries網(wǎng)絡(luò)公開度




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries被引頻次




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries被引頻次學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries年度引用




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries年度引用學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries讀者反饋




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:35:35 | 只看該作者
Deep Convolutional Neural Networks for the Segmentation of Gliomas in Multi-sequence MRIs and Low Grade Gliomas we trained two different architectures, one for each grade. Using the proposed method it was possible to obtain promising results in the 2015 Multimodal Brain Tumor Segmentation (BraTS) data set, as well as the second position in the on-site challenge.
板凳
發(fā)表于 2025-3-22 01:31:05 | 只看該作者
地板
發(fā)表于 2025-3-22 04:36:50 | 只看該作者
5#
發(fā)表于 2025-3-22 10:44:44 | 只看該作者
Conference proceedings 2016ce on Conferenceon Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015...The 25papers presented in this volume were carefully reviewed and selected from 28submissions. They are grouped around the following topics: brain lesion imageanalysis; brain tumor image segmentation; ischemic stroke lesion imagesegmentation..
6#
發(fā)表于 2025-3-22 15:11:59 | 只看該作者
Macroevolution in Human Prehistory segmentation and exclude voxels labeled as CSF, ventricles and hemorrhagic lesion and then automatically detect the lesion load. Preliminary results demonstrate that our method is coherent with expert opinion in the identification of lesions. We outline the challenges posed in automatic analysis for TBI.
7#
發(fā)表于 2025-3-22 19:56:04 | 只看該作者
https://doi.org/10.1057/9780230604315s and Low Grade Gliomas we trained two different architectures, one for each grade. Using the proposed method it was possible to obtain promising results in the 2015 Multimodal Brain Tumor Segmentation (BraTS) data set, as well as the second position in the on-site challenge.
8#
發(fā)表于 2025-3-23 00:40:21 | 只看該作者
Wolfgang Sch?nfeld,Stjepan Mutakhat parameter learning leads to comparable or even improved performance. In addition, we also performed experiments to study the impact of the composition of training data on the final segmentation performance. We found that models trained on mixed data sets achieve reasonable performance compared to models trained on stratified data.
9#
發(fā)表于 2025-3-23 02:21:47 | 只看該作者
Rituparna Bose,Alexander J. Bartholomewal features, which have the benefit of no computational overhead and easy extraction from the MR images. On MR images of 18 patients with multiple sclerosis the proposed method achieved the median Dice similarity of 0.73, sensitivity of 0.90 and positive predictive value of 0.61, which indicate accurate segmentation of white-matter lesions.
10#
發(fā)表于 2025-3-23 08:54:15 | 只看該作者
Principle Of Social Subsistenceases during the training phase of the BRAin Tumor Segmentation (BRATS) 2015 challenge and report promising results. During the testing phase, the algorithm was additionally evaluated in 53 unseen cases, achieving the best performance among the competing methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 08:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀远县| 蕉岭县| 资源县| 南靖县| 额济纳旗| 靖江市| 商城县| 嘉义县| 商洛市| 金昌市| 普洱| 苍梧县| 建水县| 周至县| 斗六市| 内江市| 那曲县| 班戈县| 巨野县| 徐汇区| 西乌珠穆沁旗| 通渭县| 九寨沟县| 辰溪县| 汪清县| 论坛| 柘城县| 凤翔县| 庆安县| 麻江县| 关岭| 湖北省| 抚松县| 云安县| 裕民县| 利津县| 和平区| 吉林市| 遂川县| 县级市| 房产|