找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 7th International Wo Alessandro Crimi,Spyridon Bakas Conferen

[復(fù)制鏈接]
查看: 43708|回復(fù): 65
樓主
發(fā)表于 2025-3-21 17:46:37 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
期刊簡稱7th International Wo
影響因子2023Alessandro Crimi,Spyridon Bakas
視頻videohttp://file.papertrans.cn/191/190320/190320.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 7th International Wo Alessandro Crimi,Spyridon Bakas Conferen
影響因子This two-volume set LNCS 12962 and 12963 constitutes the thoroughly refereed proceedings of the 7th International MICCAI Brainlesion Workshop, BrainLes 2021, as well as the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge, the Federated Tumor Segmentation (FeTS) Challenge, the Cross-Modality Domain Adaptation (CrossMoDA) Challenge, and the challenge on Quantification of Uncertainties in Biomedical Image Quantification (QUBIQ). These were held jointly at the 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020, in September 2021. The 91 revised papers presented in these volumes were selected form 151 submissions. Due to COVID-19 pandemic the conference was held virtually.
Pindex Conference proceedings 2022
The information of publication is updating

書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries影響因子(影響力)




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries影響因子(影響力)學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries網(wǎng)絡(luò)公開度




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries被引頻次




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries被引頻次學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries年度引用




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries年度引用學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries讀者反饋




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:17:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:52:52 | 只看該作者
MS UNet: Multi-scale 3D UNet for?Brain Tumor Segmentation 3D CNN architectures for medical imaging tasks, including brain tumor segmentation. The skip connection in the UNet architecture concatenates multi-scale features from image data. The multi-scaled features play an essential role in brain tumor segmentation. Researchers presented numerous multi-scal
地板
發(fā)表于 2025-3-22 05:41:53 | 只看該作者
5#
發(fā)表于 2025-3-22 12:34:52 | 只看該作者
Orthogonal-Nets: A Large Ensemble of 2D Neural Networks for 3D Brain Tumor Segmentation slices of the image from axial, sagittal, and coronal views of the 3D brain volume and predicts the probability for the tumor segmentation region. The predicted probability distributions from all three views are averaged to generate a 3D probability distribution map that is subsequently used to pre
6#
發(fā)表于 2025-3-22 15:21:21 | 只看該作者
Feature Learning by Attention and Ensemble with 3D U-Net to Glioma Tumor Segmentationeam’s solution (open brats2020, ranked among the top ten teams work), we proposed a similar as 3D U-Net neural network, called as TE U-Net, to differentiate glioma sub-regions class. According that automatically learns to focus on sub-regions class structures of varying shapes and sizes, we proposed
7#
發(fā)表于 2025-3-22 17:11:39 | 只看該作者
8#
發(fā)表于 2025-3-23 00:39:48 | 只看該作者
Brain Tumor Segmentation with Patch-Based 3D Attention UNet from Multi-parametric MRIiparametric MRI scans has important clinical relevance in diagnosis, prognosis and treatment of brain tumors. However, due to the highly heterogeneous appearance and shape, segmentation of the sub-regions is very challenging. Recent development using deep learning models has proved its effectiveness
9#
發(fā)表于 2025-3-23 05:07:55 | 只看該作者
Dice Focal Loss with?ResNet-like Encoder-Decoder Architecture in?3D Brain Tumor Segmentationtment planning, image-guided interventions, monitoring tumor growth, and the generation of radiotherapy maps. However, manual delineation practices has suffered from many problems such as requiring anatomical knowledge, taking considerable time for annotation, showing inaccuracy due to human error.
10#
發(fā)表于 2025-3-23 09:25:52 | 只看該作者
HNF-Netv2 for?Brain Tumor Segmentation Using Multi-modal MR Imagingn tumor segmentation using multi-modal MR imaging. In this paper, we extend our HNF-Net to HNF-Netv2 by adding inter-scale and intra-scale semantic discrimination enhancing blocks to further exploit global semantic discrimination for the obtained high-resolution features. We trained and evaluated ou
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 04:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇义县| 六枝特区| 邢台市| 眉山市| 南涧| 长宁县| 饶河县| 城口县| 融水| 敦化市| 大埔区| 天峻县| 司法| 凌海市| 林口县| 柳河县| 依安县| 淄博市| 扬中市| 景东| 吉首市| 泰和县| 岳普湖县| 鄂温| 重庆市| 高青县| 精河县| 公安县| 常熟市| 北碚区| 丽水市| 金川县| 句容市| 阳东县| 台北县| 乌兰县| 曲松县| 德安县| 炉霍县| 古蔺县| 新绛县|