找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Brain-Computer Interfaces; Current Trends and A Aboul Ella Hassanien,Ahmad Taher Azar Book 2015 Springer International Publishing Switzerla

[復(fù)制鏈接]
查看: 19461|回復(fù): 53
樓主
發(fā)表于 2025-3-21 19:06:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Brain-Computer Interfaces
期刊簡(jiǎn)稱(chēng)Current Trends and A
影響因子2023Aboul Ella Hassanien,Ahmad Taher Azar
視頻videohttp://file.papertrans.cn/191/190296/190296.mp4
發(fā)行地址Presents current trends and applications in Brain Computer Interface technology.Presents novel paradigms for EEG signal recording, advanced methods for processing them, new applications for Brain Comp
學(xué)科分類(lèi)Intelligent Systems Reference Library
圖書(shū)封面Titlebook: Brain-Computer Interfaces; Current Trends and A Aboul Ella Hassanien,Ahmad Taher Azar Book 2015 Springer International Publishing Switzerla
影響因子.The success of a BCI system depends as much on the system itself as on the user’s ability to produce distinctive EEG activity. BCI systems can be divided into two groups according to the placement of the electrodes used to detect and measure neurons firing in the brain. These groups are: invasive systems, electrodes are inserted directly into the cortex are used for single cell or multi unit recording, and electrocorticography (EcoG), electrodes are placed on the surface of the cortex (or dura); noninvasive systems, they are placed on the scalp and use electroencephalography (EEG) or magnetoencephalography (MEG) to detect neuron activity..The book is basically divided into three parts. The first part of the book covers the basic concepts and overviews of Brain Computer Interface. The second part describes new theoretical developments of BCI systems. The third part covers views on real applications of BCI systems..
Pindex Book 2015
The information of publication is updating

書(shū)目名稱(chēng)Brain-Computer Interfaces影響因子(影響力)




書(shū)目名稱(chēng)Brain-Computer Interfaces影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Brain-Computer Interfaces網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Brain-Computer Interfaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Brain-Computer Interfaces被引頻次




書(shū)目名稱(chēng)Brain-Computer Interfaces被引頻次學(xué)科排名




書(shū)目名稱(chēng)Brain-Computer Interfaces年度引用




書(shū)目名稱(chēng)Brain-Computer Interfaces年度引用學(xué)科排名




書(shū)目名稱(chēng)Brain-Computer Interfaces讀者反饋




書(shū)目名稱(chēng)Brain-Computer Interfaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:31:58 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:36:27 | 只看該作者
Source Localization for Brain-Computer Interfacesthe EEG signal by its spatial features. This chapter is dedicated to the essential theory related to electromagnetic source localization problem with a particular focus on the family of sparse localization approaches. First we discuss general electromagnetic head modelling methods used to solve the
地板
發(fā)表于 2025-3-22 07:37:03 | 只看該作者
Hippocampal Theta-Based Brain Computer Interface and substantial—theta-contingent training produces a two- to four-fold increase in learning speed, accompanied by striking differences in hippocampal, prefrontal and cerebellar electrophysiological patterns. Unlike many interfaces that serve as sensory or motor prostheses, our system appears to eng
5#
發(fā)表于 2025-3-22 09:49:06 | 只看該作者
6#
發(fā)表于 2025-3-22 14:54:05 | 只看該作者
Detection of Human Emotions Using Features Based on the Multiwavelet Transform of EEG Signalset decomposition of EEG signals. These features have been used as an input to multiclass least squares support vector machine (MC-LS-SVM) together with the radial basis function (RBF), Mexican hat wavelet, and Morlet wavelet kernel functions for classification of human emotions from EEG signals. The
7#
發(fā)表于 2025-3-22 21:07:13 | 只看該作者
8#
發(fā)表于 2025-3-23 00:11:45 | 只看該作者
9#
發(fā)表于 2025-3-23 03:41:00 | 只看該作者
10#
發(fā)表于 2025-3-23 08:01:57 | 只看該作者
Mood Recognition System Using EEG Signal of Song Induced Activitiesucted for 25?min, with eye closed and each subject was asked to concentrate on the given tasks. In this study, we have created EEG dataset containing data of five mental tasks of ten different subjects. We determine the alpha rhythms in the left hemisphere are more predominant over the right hemisph
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 08:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
唐海县| 泸定县| 武夷山市| 庐江县| 湘潭县| 昌图县| 来宾市| 乌拉特前旗| 松潘县| 土默特右旗| 崇州市| 衡阳市| 长沙市| 西吉县| 乐至县| 项城市| 阳山县| 定结县| 五莲县| 大城县| 芜湖市| 紫金县| 绩溪县| 利川市| 清水县| 鄂托克前旗| 健康| 柞水县| 确山县| 钟山县| 永福县| 南陵县| 大厂| 新野县| 会同县| 连南| 凤台县| 沁源县| 拉萨市| 辉南县| 北京市|