找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brain Storm Optimization Algorithms; Concepts, Principles Shi Cheng,Yuhui Shi Book 2019 Springer Nature Switzerland AG 2019 Computational I

[復(fù)制鏈接]
查看: 54830|回復(fù): 45
樓主
發(fā)表于 2025-3-21 20:01:53 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Brain Storm Optimization Algorithms
期刊簡稱Concepts, Principles
影響因子2023Shi Cheng,Yuhui Shi
視頻videohttp://file.papertrans.cn/191/190235/190235.mp4
發(fā)行地址Presents the latest advances in Brain Storm Optimization (BSO) algorithms.Shares new ideas and outlines future directions of development.Presents various concepts, principles and applications of Brain
學科分類Adaptation, Learning, and Optimization
圖書封面Titlebook: Brain Storm Optimization Algorithms; Concepts, Principles Shi Cheng,Yuhui Shi Book 2019 Springer Nature Switzerland AG 2019 Computational I
影響因子Brain Storm Optimization (BSO) algorithms are a new kind of swarm intelligence method, which is based on the collective behavior of human beings, i.e., on the brainstorming process. Since the introduction of BSO algorithms in 2011, many studies on them have been conducted. They not only offer an optimization method, but could also be viewed as a framework of optimization techniques. The process employed in the algorithms could be simplified as a framework with two basic operations: the converging operation and the diverging operation. A “good enough” optimum could be obtained through recursive solution divergence and convergence. The resulting optimization algorithm would naturally have the capability of both convergence and divergence..This book is primarily intended for researchers, engineers, and graduate students with an interest in BSO algorithms and their applications. The chapters cover various aspects of BSO algorithms, and collectively provide broad insights into what these algorithms have to offer. The book is ideally suited as a graduate-level textbook, whereby students may be tasked with the study of the rich variants of BSO algorithms that involves a hands-on implement
Pindex Book 2019
The information of publication is updating

書目名稱Brain Storm Optimization Algorithms影響因子(影響力)




書目名稱Brain Storm Optimization Algorithms影響因子(影響力)學科排名




書目名稱Brain Storm Optimization Algorithms網(wǎng)絡(luò)公開度




書目名稱Brain Storm Optimization Algorithms網(wǎng)絡(luò)公開度學科排名




書目名稱Brain Storm Optimization Algorithms被引頻次




書目名稱Brain Storm Optimization Algorithms被引頻次學科排名




書目名稱Brain Storm Optimization Algorithms年度引用




書目名稱Brain Storm Optimization Algorithms年度引用學科排名




書目名稱Brain Storm Optimization Algorithms讀者反饋




書目名稱Brain Storm Optimization Algorithms讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:57:47 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:44:57 | 只看該作者
1867-4534 sents various concepts, principles and applications of BrainBrain Storm Optimization (BSO) algorithms are a new kind of swarm intelligence method, which is based on the collective behavior of human beings, i.e., on the brainstorming process. Since the introduction of BSO algorithms in 2011, many stu
地板
發(fā)表于 2025-3-22 05:52:00 | 只看該作者
5#
發(fā)表于 2025-3-22 08:55:32 | 只看該作者
6#
發(fā)表于 2025-3-22 15:50:11 | 只看該作者
Permutation Structure in 0-1 Datat and with FACTS conditions. These results show that BSO produce better results compared to GA for solving optimal rescheduling of generators. The BSO algorithm based generation reallocation has been examined and tested on IEEE 30 bus system without and with FACTS devices.
7#
發(fā)表于 2025-3-22 21:06:54 | 只看該作者
8#
發(fā)表于 2025-3-23 00:41:12 | 只看該作者
Multi-objective Differential-Based Brain Storm Optimization for Environmental Economic Dispatch Probsystems with 6 units and 40 units in the literature. The simulation results show that comparing with other intelligent optimization method, MDBSO can maintain the diversity of Pareto optimal solutions and show better convergence at the same time.
9#
發(fā)表于 2025-3-23 03:11:00 | 只看該作者
Enhancement of Voltage Stability Using FACTS Devices in Electrical Transmission System with Optimal t and with FACTS conditions. These results show that BSO produce better results compared to GA for solving optimal rescheduling of generators. The BSO algorithm based generation reallocation has been examined and tested on IEEE 30 bus system without and with FACTS devices.
10#
發(fā)表于 2025-3-23 06:58:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西峡县| 井陉县| 汶川县| 灵台县| 建昌县| 成武县| 黄龙县| 正蓝旗| 汉川市| 孟州市| 汉源县| 长武县| 乌鲁木齐市| 临朐县| 潢川县| 德惠市| 循化| 奇台县| 昌平区| 平乡县| 钦州市| 资阳市| 海林市| 定结县| 西平县| 吴桥县| 玛曲县| 平果县| 桓台县| 崇信县| 寿阳县| 万盛区| 马公市| 威信县| 郎溪县| 长沙市| 奇台县| 土默特右旗| 新干县| 雅安市| 贵德县|