找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bousfield Classes and Ohkawa‘s Theorem; Nagoya, Japan, Augus Takeo Ohsawa,Norihiko Minami Conference proceedings 2020 Springer Nature Singa

[復(fù)制鏈接]
樓主: Deflated
21#
發(fā)表于 2025-3-25 05:30:48 | 只看該作者
22#
發(fā)表于 2025-3-25 07:29:26 | 只看該作者
A Form of Civilization and CultureSome of Ohkawa’s mathematical life in Hiroshima are suggested.
23#
發(fā)表于 2025-3-25 13:44:54 | 只看該作者
24#
發(fā)表于 2025-3-25 19:49:49 | 只看該作者
Lunli and Confucian Moral Theory We give a brief introduction to tensor triangulated geometry, a brief introduction to various motivic categories, and then make some observations about the conjectural structure of the tensor triangulated spectrum of the Morel–Voevodsky stable homotopy category over a finite field.
25#
發(fā)表于 2025-3-25 23:28:22 | 只看該作者
26#
發(fā)表于 2025-3-26 00:27:36 | 只看該作者
https://doi.org/10.1007/978-3-662-12401-7We describe the basic ideas of factorization algebras on manifolds and topological chiral homology, with emphasis on their gluing properties.
27#
發(fā)表于 2025-3-26 05:01:08 | 只看該作者
28#
發(fā)表于 2025-3-26 11:34:36 | 只看該作者
29#
發(fā)表于 2025-3-26 15:51:15 | 只看該作者
Combinatorial Homotopy Categories,A model category is called combinatorial if it is cofibrantly generated and its underlying category is locally presentable. As shown in recent years, homotopy categories of combinatorial model categories share useful properties, such as being well generated and satisfying a very general form of Ohkawa’s theorem.
30#
發(fā)表于 2025-3-26 19:11:56 | 只看該作者
Some Observations About Motivic Tensor Triangulated Geometry over a Finite Field,We give a brief introduction to tensor triangulated geometry, a brief introduction to various motivic categories, and then make some observations about the conjectural structure of the tensor triangulated spectrum of the Morel–Voevodsky stable homotopy category over a finite field.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北辰区| 玉树县| 田东县| 巨鹿县| 商水县| 轮台县| 秭归县| 康定县| 璧山县| 穆棱市| 格尔木市| 赤水市| 武城县| 东宁县| 灌阳县| 喀什市| 集安市| 滦南县| 辽宁省| 乐清市| 定兴县| 林芝县| 桐柏县| 太仆寺旗| 伊宁市| 麻城市| 涿州市| 临澧县| 宽甸| 龙山县| 基隆市| 柳江县| 巴马| 无锡市| 东山县| 吴忠市| 九龙城区| 辽宁省| 高邮市| 青州市| 东兴市|