找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bousfield Classes and Ohkawa‘s Theorem; Nagoya, Japan, Augus Takeo Ohsawa,Norihiko Minami Conference proceedings 2020 Springer Nature Singa

[復(fù)制鏈接]
樓主: Deflated
21#
發(fā)表于 2025-3-25 05:30:48 | 只看該作者
22#
發(fā)表于 2025-3-25 07:29:26 | 只看該作者
A Form of Civilization and CultureSome of Ohkawa’s mathematical life in Hiroshima are suggested.
23#
發(fā)表于 2025-3-25 13:44:54 | 只看該作者
24#
發(fā)表于 2025-3-25 19:49:49 | 只看該作者
Lunli and Confucian Moral Theory We give a brief introduction to tensor triangulated geometry, a brief introduction to various motivic categories, and then make some observations about the conjectural structure of the tensor triangulated spectrum of the Morel–Voevodsky stable homotopy category over a finite field.
25#
發(fā)表于 2025-3-25 23:28:22 | 只看該作者
26#
發(fā)表于 2025-3-26 00:27:36 | 只看該作者
https://doi.org/10.1007/978-3-662-12401-7We describe the basic ideas of factorization algebras on manifolds and topological chiral homology, with emphasis on their gluing properties.
27#
發(fā)表于 2025-3-26 05:01:08 | 只看該作者
28#
發(fā)表于 2025-3-26 11:34:36 | 只看該作者
29#
發(fā)表于 2025-3-26 15:51:15 | 只看該作者
Combinatorial Homotopy Categories,A model category is called combinatorial if it is cofibrantly generated and its underlying category is locally presentable. As shown in recent years, homotopy categories of combinatorial model categories share useful properties, such as being well generated and satisfying a very general form of Ohkawa’s theorem.
30#
發(fā)表于 2025-3-26 19:11:56 | 只看該作者
Some Observations About Motivic Tensor Triangulated Geometry over a Finite Field,We give a brief introduction to tensor triangulated geometry, a brief introduction to various motivic categories, and then make some observations about the conjectural structure of the tensor triangulated spectrum of the Morel–Voevodsky stable homotopy category over a finite field.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
杭州市| 湘潭县| 弥渡县| 淮安市| 贵州省| 浦东新区| 沙洋县| 长顺县| 和田县| 乌审旗| 安阳市| 宝丰县| 彩票| 思茅市| 平顶山市| 平阴县| 长子县| 丰原市| 九龙坡区| 织金县| 茶陵县| 广昌县| 鄂尔多斯市| 泉州市| 上虞市| 南皮县| 雅江县| 平阳县| 陇南市| 嘉善县| 上高县| 永登县| 龙口市| 平罗县| 沅陵县| 年辖:市辖区| 静海县| 剑阁县| 维西| 宿迁市| 叙永县|