找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bounding Approaches to System Identification; Mario Milanese,John Norton,éric Walter Book 1996 Springer Science+Business Media New York 19

[復制鏈接]
樓主: 加冕
61#
發(fā)表于 2025-4-1 03:56:44 | 只看該作者
62#
發(fā)表于 2025-4-1 07:13:53 | 只看該作者
Transfer Function Parameter Interval Estimation Using Recursive Least Squares in the Time and Frequmodel (or RLS model), where the equation error is assumed to lie between a known upper and lower bound. It is shown that the off-line least squares method gives the maximum and minimum parameter values that could have produced the recorded input-output sequence. By modifying the RLS estimator in two
63#
發(fā)表于 2025-4-1 10:46:34 | 只看該作者
64#
發(fā)表于 2025-4-1 17:13:53 | 只看該作者
Linear Interpolation and Estimation Using Interval Analysis, the solution set (not the parameter set). It characterizes and presents the bounding functions for the solution set using interval arithmetic. Numerical algorithms with result verification and corresponding programs for the computation of the bounding functions in given domain are reported. Some ex
65#
發(fā)表于 2025-4-1 22:05:44 | 只看該作者
Adaptive Approximation of Uncertainty Sets for Linear Regression Models,etric/non-parametric (restricted complexity) models. The hypothesis is that disturbance information and prior knowledge on the unmodeled dynamics are available as deterministic bounds. A procedure is proposed for constructing recursively an outer bounding parallelotopic estimate of the parameter unc
66#
發(fā)表于 2025-4-2 00:39:57 | 只看該作者
Worst-Case ,, Identification,aluation of the identification errors, the design of experiment, the selection of the model structure, the construction of optimal and almost optimal algorithms, and the convergence properties of the identification algorithms.
67#
發(fā)表于 2025-4-2 04:58:43 | 只看該作者
68#
發(fā)表于 2025-4-2 08:39:07 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宜昌市| 南通市| 马关县| 莫力| 灌云县| 龙胜| 淮阳县| 铜川市| 东阿县| 清水河县| 南郑县| 陇西县| 峡江县| 镇坪县| 岱山县| 北京市| 贞丰县| 博野县| 麟游县| 抚宁县| 仁化县| 保亭| 淮北市| 本溪| 海盐县| 凤山市| 小金县| 丹凤县| 万全县| 绥宁县| 山西省| 石门县| 仁布县| 尚义县| 象山县| 子长县| 余姚市| 福建省| 东光县| 蓝山县| 铜川市|