找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundedly Controlled Topology; Foundations of Algeb Douglas R. Anderson,Hans J. Munkholm Book 1988 Springer-Verlag Berlin Heidelberg 1988 A

[復(fù)制鏈接]
查看: 27778|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:11:48 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Boundedly Controlled Topology
期刊簡稱Foundations of Algeb
影響因子2023Douglas R. Anderson,Hans J. Munkholm
視頻videohttp://file.papertrans.cn/191/190073/190073.mp4
學(xué)科分類Lecture Notes in Mathematics
圖書封面Titlebook: Boundedly Controlled Topology; Foundations of Algeb Douglas R. Anderson,Hans J. Munkholm Book 1988 Springer-Verlag Berlin Heidelberg 1988 A
影響因子Several recent investigations have focused attention on spaces and manifolds which are non-compact but where the problems studied have some kind of "control near infinity". This monograph introduces the category of spaces that are "boundedly controlled" over the (usually non-compact) metric space Z. It sets out to develop the algebraic and geometric tools needed to formulate and to prove boundedly controlled analogues of many of the standard results of algebraic topology and simple homotopy theory. One of the themes of the book is to show that in many cases the proof of a standard result can be easily adapted to prove the boundedly controlled analogue and to provide the details, often omitted in other treatments, of this adaptation. For this reason, the book does not require of the reader an extensive background. In the last chapter it is shown that special cases of the boundedly controlled Whitehead group are strongly related to lower K-theoretic groups, and the boundedly controlled theory is compared to Siebenmann‘s proper simple homotopy theory when Z = IR or IR2.
Pindex Book 1988
The information of publication is updating

書目名稱Boundedly Controlled Topology影響因子(影響力)




書目名稱Boundedly Controlled Topology影響因子(影響力)學(xué)科排名




書目名稱Boundedly Controlled Topology網(wǎng)絡(luò)公開度




書目名稱Boundedly Controlled Topology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Boundedly Controlled Topology被引頻次




書目名稱Boundedly Controlled Topology被引頻次學(xué)科排名




書目名稱Boundedly Controlled Topology年度引用




書目名稱Boundedly Controlled Topology年度引用學(xué)科排名




書目名稱Boundedly Controlled Topology讀者反饋




書目名稱Boundedly Controlled Topology讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:14:48 | 只看該作者
0075-8434 kind of "control near infinity". This monograph introduces the category of spaces that are "boundedly controlled" over the (usually non-compact) metric space Z. It sets out to develop the algebraic and geometric tools needed to formulate and to prove boundedly controlled analogues of many of the sta
板凳
發(fā)表于 2025-3-22 00:41:22 | 只看該作者
Book 1988s reason, the book does not require of the reader an extensive background. In the last chapter it is shown that special cases of the boundedly controlled Whitehead group are strongly related to lower K-theoretic groups, and the boundedly controlled theory is compared to Siebenmann‘s proper simple homotopy theory when Z = IR or IR2.
地板
發(fā)表于 2025-3-22 08:09:44 | 只看該作者
5#
發(fā)表于 2025-3-22 10:56:34 | 只看該作者
The algebraic topology of boundedly controlled spaces,
6#
發(fā)表于 2025-3-22 14:39:13 | 只看該作者
The geometric, boundedly controlled whitehead group,
7#
發(fā)表于 2025-3-22 18:53:23 | 只看該作者
Free and projective rpg modules the algebraic whitehead groups of rpg,
8#
發(fā)表于 2025-3-22 22:29:46 | 只看該作者
9#
發(fā)表于 2025-3-23 01:26:27 | 只看該作者
Boundedly controlled manifolds and the s-cobordism theorem,
10#
發(fā)表于 2025-3-23 05:34:39 | 只看該作者
Boundedly Controlled Topology978-3-540-39249-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上思县| 苗栗市| 维西| 宿迁市| 元谋县| 都匀市| 江陵县| 江都市| 于田县| 九江市| 玛纳斯县| 金昌市| 上蔡县| 西藏| 临颍县| 浠水县| 广河县| 南陵县| 翁源县| 伊宁县| 双城市| 娄底市| 嵩明县| 阜城县| 普定县| 玛纳斯县| 区。| 聂荣县| 通河县| 静海县| 呼伦贝尔市| 渭源县| 宿迁市| 伽师县| 晋中市| 象山县| 涡阳县| 肥西县| 辛集市| 同仁县| 西峡县|