找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bounded Queries in Recursion Theory; William I. Gasarch,Georgia A. Martin Book 1999 Springer Science+Business Media New York 1999 Computab

[復(fù)制鏈接]
樓主: enamel
21#
發(fā)表于 2025-3-25 06:55:04 | 只看該作者
Springer Series in Materials ScienceRecall that, for every set . and every . ≥ 1, #. is the function defined by
22#
發(fā)表于 2025-3-25 10:01:56 | 只看該作者
Active Centers of Luminescent MaterialsRecall that, for n ≥ 1, ODD. is the set of .-tuples (.,…,.) such that #.(.,…,.) is odd:.Clearly, ODD. ∈ QC∥(.,.). If . = . or A is semirecursive, then (by Theorems 2.1.4 and 4.3.2.2, respectively) ., hence .. Can we do better than this for such .? What about other types of sets .? In this chapter we show the following.
23#
發(fā)表于 2025-3-25 15:00:35 | 只看該作者
24#
發(fā)表于 2025-3-25 17:42:31 | 只看該作者
https://doi.org/10.1007/978-3-642-79017-1Throughout this book our model of computation has been .. The question arises as to how much the power of . would help in terms of query complexity.
25#
發(fā)表于 2025-3-25 21:57:17 | 只看該作者
26#
發(fā)表于 2025-3-26 01:54:15 | 只看該作者
27#
發(fā)表于 2025-3-26 05:28:34 | 只看該作者
#, and Other FunctionsRecall that, for every set . and every . ≥ 1, #. is the function defined by
28#
發(fā)表于 2025-3-26 11:32:48 | 只看該作者
The Complexity of ODD, and MODRecall that, for n ≥ 1, ODD. is the set of .-tuples (.,…,.) such that #.(.,…,.) is odd:.Clearly, ODD. ∈ QC∥(.,.). If . = . or A is semirecursive, then (by Theorems 2.1.4 and 4.3.2.2, respectively) ., hence .. Can we do better than this for such .? What about other types of sets .? In this chapter we show the following.
29#
發(fā)表于 2025-3-26 13:51:41 | 只看該作者
30#
發(fā)表于 2025-3-26 16:49:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
信阳市| 永城市| 肃北| 大城县| 壶关县| 门源| 张家川| 乐平市| 全椒县| 宁陵县| 原阳县| 吉水县| 辉南县| 扶绥县| 神农架林区| 富蕴县| 宣城市| 龙里县| 神农架林区| 泾源县| 潍坊市| 石棉县| 景泰县| 穆棱市| 湘潭市| 琼海市| 东莞市| 聂拉木县| 阿鲁科尔沁旗| 凤山市| 宽甸| 泽库县| 桓仁| 大关县| 宁陕县| 蓬安县| 岳池县| 民县| 剑川县| 新兴县| 延津县|