找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bounded Integral Operators on L 2 Spaces; Paul Richard Halmos,Viakalathur Shankar Sunder Book 1978 Springer-Verlag Berlin Heidelberg 1978

[復(fù)制鏈接]
樓主: 熱情美女
31#
發(fā)表于 2025-3-27 00:29:29 | 只看該作者
Ferd Williams,B. Baron,S. P. Varmane that asks which operators . be integral operators (§16). The problem is one of recognition: if an integral operator on ..(.) is described in some manner other than by its kernel, how do its operatorial and measure-theoretic properties reflect the existence of a kernel that induces it? (Cf. Proble
32#
發(fā)表于 2025-3-27 04:19:53 | 只看該作者
33#
發(fā)表于 2025-3-27 07:21:05 | 只看該作者
34#
發(fā)表于 2025-3-27 13:14:20 | 只看該作者
Uniqueness, to ..(.). It is natural to ask: is that linear transformation injective? In other words: is an integral operator induced by only one kernel? The content of the following assertion is that the answer is yes.
35#
發(fā)表于 2025-3-27 15:42:43 | 只看該作者
Essential Spectrum,ty operator on ..(?.) (which is not an integral operator) and the tensor product of the identity operator on ..(?.) with a projection of rank 1 on ..(II) (which is an integral operator). What is the essential difference between these two kinds of examples?
36#
發(fā)表于 2025-3-27 19:34:59 | 只看該作者
Characterization,ators? The question refers to unitary equivalence; in precise terms, it asks for a characterization of those operators . on ..(.) for which there exists a unitary operator . on ..(.) such that .* is integral.
37#
發(fā)表于 2025-3-28 01:37:48 | 只看該作者
Universality,ad of the existential one. In precise terms: under what conditions on an operator . on ..(.) does it happen that .* is an integral operator for every unitary . on ..(.)? When it does happen, the operator . will be called a . integral operator on ..(.).
38#
發(fā)表于 2025-3-28 06:03:10 | 只看該作者
Book 1978an integral operator is the natural "continuous" generali- zation of the operators induced by matrices, and the only integrals that appear are the familiar Lebesgue-Stieltjes integrals on classical non-pathological mea- sure spaces. The category. Some of the flavor of the theory can be perceived in
39#
發(fā)表于 2025-3-28 07:58:38 | 只看該作者
40#
發(fā)表于 2025-3-28 13:30:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿合奇县| 博客| 通化市| 西宁市| 莫力| 靖州| 太康县| 大方县| 萨迦县| 聊城市| 浑源县| 沙田区| 子洲县| 黔东| 紫云| 柘荣县| 海原县| 琼结县| 江永县| 五河县| 兴海县| 桂东县| 芮城县| 瓮安县| 湾仔区| 敖汉旗| 岑溪市| 林口县| 大厂| 成武县| 马尔康县| 秦皇岛市| 准格尔旗| 内黄县| 武城县| 广东省| 长阳| 大竹县| 阿图什市| 囊谦县| 天门市|