找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Value Problems with Global Projection Conditions; Xiaochun Liu,Bert-Wolfgang Schulze Book 2018 Springer Nature Switzerland AG 201

[復(fù)制鏈接]
樓主: Annihilate
31#
發(fā)表于 2025-3-26 21:06:37 | 只看該作者
Toeplitz boundary value problems without the transmission propertyLet . be a compact manifold with boundary ..
32#
發(fā)表于 2025-3-27 04:01:54 | 只看該作者
Examples, applications and remarksThe present section gives an abstract on additional results around the nature of cone operators and ellipticity. If proofs are dropped we refer to corresponding material in textbooks or articles.
33#
發(fā)表于 2025-3-27 05:44:48 | 只看該作者
34#
發(fā)表于 2025-3-27 13:04:57 | 只看該作者
https://doi.org/10.1007/978-94-011-5256-3 calculus on a smooth manifold . with boundary . . The results can be found, for instance, in the monograph [34] of Rempel and Schulze, and of course, also in the work [9] of Boutet de Monvel; see also the monograph of Grubb [19]. Therefore, here we only sketch the proofs.
35#
發(fā)表于 2025-3-27 14:25:52 | 只看該作者
36#
發(fā)表于 2025-3-27 21:40:39 | 只看該作者
37#
發(fā)表于 2025-3-28 00:33:59 | 只看該作者
978-3-030-09933-6Springer Nature Switzerland AG 2018
38#
發(fā)表于 2025-3-28 06:09:30 | 只看該作者
Book 2018Further, it shows how the calculus contains parametrices of elliptic elements. Lastly, the book describes natural connections to ellipticity of Atiyah-Patodi-Singer type for Dirac and other geometric operators, in particular spectral boundary conditions with Calderón-Seeley projections and the characterization of Cauchy data spaces..
39#
發(fā)表于 2025-3-28 07:35:49 | 只看該作者
40#
發(fā)表于 2025-3-28 12:49:43 | 只看該作者
0255-0156 pectral boundary conditions for elliptic differential operat.This book presents boundary value problems for arbitrary elliptic pseudo-differential operators on a smooth compact manifold with boundary. In this regard, every operator admits?global projection boundary conditions, giving rise to analogu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 20:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扎赉特旗| 富锦市| 通州区| 公安县| 正阳县| 保康县| 寻乌县| 西安市| 泸西县| 德惠市| 阳信县| 鄂温| 灵宝市| 阜平县| 定陶县| 鄄城县| 罗田县| 增城市| 广安市| 宿州市| 沅陵县| 大冶市| 武冈市| 安阳县| 宝应县| 开封市| 集贤县| 十堰市| 呼玛县| 商河县| 郴州市| 咸宁市| 霞浦县| 宜丰县| 东兴市| 张家界市| 汝城县| 灵璧县| 玛曲县| 曲靖市| 鹤庆县|