找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Value Problems in the Spaces of Distributions; Yakov Roitberg Book 1999 Springer Science+Business Media Dordrecht 1999 Boundary v

[復制鏈接]
樓主: GALL
11#
發(fā)表于 2025-3-23 10:11:41 | 只看該作者
,Green’s Formulas and Theorems on Complete Collection of Isomorphisms for General Elliptic Boundary In the bounded domain . ? .. with the boundary . ? .. we consider the elliptic boundary value problem
12#
發(fā)表于 2025-3-23 16:22:53 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/b/image/190043.jpg
13#
發(fā)表于 2025-3-23 18:59:59 | 只看該作者
https://doi.org/10.1007/978-94-015-9275-8Boundary value problem; Operator theory; distribution; functional analysis; partial differential equatio
14#
發(fā)表于 2025-3-24 00:20:38 | 只看該作者
15#
發(fā)表于 2025-3-24 05:50:02 | 只看該作者
16#
發(fā)表于 2025-3-24 07:28:29 | 只看該作者
17#
發(fā)表于 2025-3-24 11:01:19 | 只看該作者
Roman Mikhailov,Inder Bir Singh Passithe exterior boundary of the domain . Denote by Γ. (j = 1, ..., k?) the i.-dimensional manifold without boundary lying inside of Γ., 0≤ i. ≤ n — 1. Let ? = n - i. denotes the codimensionality of Γ.. Assume that Γ. ∈ C∞ (j = 0, ...,k?), and Γ. ∩ Γ. =? for .
18#
發(fā)表于 2025-3-24 16:40:15 | 只看該作者
Roman Mikhailov,Inder Bir Singh Passithe exterior boundary of the domain . Denote by Γ. (j = 1, ..., k?) the i.-dimensional manifold without boundary lying inside of Γ., 0≤ i. ≤ n — 1. Let ? = n - i. denotes the codimensionality of Γ.. Assume that Γ. ∈ C∞ (j = 0, ...,k?), and Γ. ∩ Γ. =? for .
19#
發(fā)表于 2025-3-24 21:05:24 | 只看該作者
https://doi.org/10.1007/978-3-540-85818-8ions (we mention here [Ler], [G?r], [Vla], [H?r], the survey [VoG], and the bibliography given there). In this note the Cauchy problem for a system strictly hyperbolic in the Leray—Volevich sense is studied in the complete scale of spaces of Sobolev type depending on real parameters . and τ; . chara
20#
發(fā)表于 2025-3-24 23:15:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
禹州市| 衡山县| 永平县| 海安县| 宁陕县| 松滋市| 新蔡县| 莆田市| 新竹市| 富民县| 东阳市| 稻城县| 安达市| 方山县| 肇庆市| 洛浦县| 师宗县| 分宜县| 盱眙县| 保靖县| 策勒县| 清镇市| 房产| 慈溪市| 当雄县| 日土县| 滦南县| 科技| 宁波市| 荆州市| 海林市| 汨罗市| 同仁县| 岐山县| 吉木萨尔县| 巴楚县| 怀安县| 滦南县| 鲁甸县| 大邑县| 泰宁县|