找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Value Problems in Abstract Kinetic Theory; William Greenberg,Cornelis Mee,Vladimir Protopopes Book 1987 Springer Basel AG 1987 Ar

[復制鏈接]
樓主: LANK
11#
發(fā)表于 2025-3-23 12:03:15 | 只看該作者
Low-Voltage Low-Power CMOS Current Conveyors will be appropriate Borel measures on the parts D. of ?Λ corresponding to the outgoing (resp. incoming) “fluxes”, J and K are bounded linear operators defined on L. (Λ,dμ) and from L.(D.,dυ.) into L.(D.,dυ.), respectively, and h(x,ξ) is a nonnegative Lebesgue measurable function on Λ that is integr
12#
發(fā)表于 2025-3-23 16:49:43 | 只看該作者
13#
發(fā)表于 2025-3-23 22:05:16 | 只看該作者
Boundary Value Problems in Abstract Kinetic Theory
14#
發(fā)表于 2025-3-23 22:37:46 | 只看該作者
15#
發(fā)表于 2025-3-24 05:58:08 | 只看該作者
16#
發(fā)表于 2025-3-24 08:42:26 | 只看該作者
17#
發(fā)表于 2025-3-24 13:21:42 | 只看該作者
18#
發(fā)表于 2025-3-24 18:50:16 | 只看該作者
Semigroup Factorization and Reconstruction,ction we will outline the classical method for solving Wiener-Hopf equations on a half line. This will reduce the half space problem to a factorization problem. In the second section we shall study the connection between the semigroups developed in Chapters II and III and the solution of convolution
19#
發(fā)表于 2025-3-24 21:40:05 | 只看該作者
Albedo Operators, H-Equations and Representation of Solutions, of partial range boundary data. In this section we shall construct, under the general assumptions of Section VII.2, the albedo operator in terms of certain special functions. These functions generalize the H-functions, which were first extensively studied by Chandrasekhar [89].
20#
發(fā)表于 2025-3-24 23:24:30 | 只看該作者
Applications of the Stationary Theory,m that is plane parallel and invariant under arbitrary translations in horizontal directions. Although one excludes in this way processes such as zodiacal light where the light is incident at small angle with the planetary surface, it permits the study of the most important radiative phenomena.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
古浪县| 济源市| 宁南县| 阜新市| 集安市| 临湘市| 政和县| 罗江县| 罗平县| 偃师市| 诸城市| 新闻| 枣庄市| 乃东县| 德昌县| 巴东县| 彭州市| 涪陵区| 雅安市| 潮安县| 莒南县| 建德市| 庆元县| 嘉荫县| 刚察县| 高要市| 海阳市| 琼中| 黔西县| 扎赉特旗| 京山县| 分宜县| 万全县| 舞钢市| 临颍县| 卓尼县| 宁波市| 宁都县| 英山县| 安乡县| 文登市|