找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure; Pascal Auscher,Moritz Egert Book 2023 The Editor(s) (i

[復(fù)制鏈接]
樓主: 有作用
31#
發(fā)表于 2025-3-26 22:23:53 | 只看該作者
Preliminaries on Operator Theory,In this chapter, we introduce the elliptic operators used in this monograph and recall their main properties in the . setting. We also recall material on (bi)sectorial operators and their holomorphic functional calculus.
32#
發(fā)表于 2025-3-27 02:07:04 | 只看該作者
33#
發(fā)表于 2025-3-27 05:38:19 | 只看該作者
34#
發(fā)表于 2025-3-27 10:45:22 | 只看該作者
35#
發(fā)表于 2025-3-27 14:32:54 | 只看該作者
Identification of Adapted Hardy Spaces,This chapter is concerned with identifying three pre-Hardy spaces, ., ., and ., that play a crucial role for Dirichlet and regularity problems, with classical smoothness spaces.
36#
發(fā)表于 2025-3-27 20:56:07 | 只看該作者
37#
發(fā)表于 2025-3-28 00:25:06 | 只看該作者
Riesz Transform Estimates: Part II,We come back to the Riesz transform interval . defined in (.), the endpoints of which we have denoted by .(.). In Chap. . we have characterized the endpoints of the part of ?(.) in (1, .). The identification theorem for adapted Hardy spaces allows us to complete the discussion in the full range of exponents.
38#
發(fā)表于 2025-3-28 04:48:07 | 只看該作者
39#
發(fā)表于 2025-3-28 09:05:12 | 只看該作者
Boundedness of the Hodge Projector,In this chapter, we discuss .-boundedness of the Hodge projector associated to . (that is, . in the case when .?=?1). We obtain a characterization of the range for . in terms of critical numbers.
40#
發(fā)表于 2025-3-28 14:10:52 | 只看該作者
Basic Properties of Weak Solutions,At this point in the monograph we begin to slightly change our perspective from Hardy spaces adapted to .?=??.?÷.?. to weak solutions to the associated elliptic system in the upper half-space. In this chapter, we gather well-known properties of weak solutions that will frequently be used in the further course.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奎屯市| 卓资县| 汕尾市| 古浪县| 建德市| 永定县| 韩城市| 宣恩县| 鸡东县| 大港区| 东乌珠穆沁旗| 台南市| 酒泉市| 古蔺县| 五常市| 鲁山县| 宜川县| 彰化县| 武山县| 托克托县| 海兴县| 建瓯市| 井陉县| 巧家县| 永济市| 柘荣县| 石河子市| 三台县| 平谷区| 海晏县| 武鸣县| 白城市| 江口县| 白朗县| 米易县| 克山县| 盐边县| 浦城县| 阳山县| 毕节市| 建瓯市|