找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Stabilization of Parabolic Equations; Ionu? Munteanu Book 2019 Springer Nature Switzerland AG 2019 Parabolic Partial Differential

[復制鏈接]
查看: 35978|回復: 41
樓主
發(fā)表于 2025-3-21 18:14:06 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Boundary Stabilization of Parabolic Equations
影響因子2023Ionu? Munteanu
視頻videohttp://file.papertrans.cn/191/190028/190028.mp4
發(fā)行地址Describes a new technique of stabilizing parabolic type equations.Discusses numerous applications for the control techniques presented.Will be an indispensable tool for researchers in control theory a
學科分類Progress in Nonlinear Differential Equations and Their Applications
圖書封面Titlebook: Boundary Stabilization of Parabolic Equations;  Ionu? Munteanu Book 2019 Springer Nature Switzerland AG 2019 Parabolic Partial Differential
影響因子This monograph presents a technique, developed by the author, to design asymptotically exponentially stabilizing finite-dimensional boundary proportional-type feedback controllers for nonlinear parabolic-type equations. The potential control applications of this technique are wide ranging in many research areas, such as Newtonian fluid flows modeled by the Navier-Stokes equations; electrically conducted fluid flows; phase separation modeled by the Cahn-Hilliard equations; and deterministic or stochastic semi-linear heat equations arising in biology, chemistry, and population dynamics modeling..The text provides answers to the following problems, which are of great practical importance:.Designing the feedback law using a minimal set of eigenfunctions of the linear operator obtained from the linearized equation around the target state.Designing observers for the considered control systems.Constructing time-discrete controllers requiring only partial knowledge of the state.After reviewing standard notations and results in functional analysis, linear algebra, probability theory and PDEs, the author describes his novel stabilization algorithm. He then demonstrates how this abstract mode
Pindex Book 2019
The information of publication is updating

書目名稱Boundary Stabilization of Parabolic Equations影響因子(影響力)




書目名稱Boundary Stabilization of Parabolic Equations影響因子(影響力)學科排名




書目名稱Boundary Stabilization of Parabolic Equations網絡公開度




書目名稱Boundary Stabilization of Parabolic Equations網絡公開度學科排名




書目名稱Boundary Stabilization of Parabolic Equations被引頻次




書目名稱Boundary Stabilization of Parabolic Equations被引頻次學科排名




書目名稱Boundary Stabilization of Parabolic Equations年度引用




書目名稱Boundary Stabilization of Parabolic Equations年度引用學科排名




書目名稱Boundary Stabilization of Parabolic Equations讀者反饋




書目名稱Boundary Stabilization of Parabolic Equations讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:33:28 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:35:03 | 只看該作者
https://doi.org/10.1007/978-94-6209-992-0of great interest to consider control problems associated with equations with delays. Furthermore, special kinds of substances, such as viscoelastic fluids, may also impose such delays. We will prove here that the proportional feedback, designed in Chap.?2, still ensures stability for this kind of system.
地板
發(fā)表于 2025-3-22 07:48:34 | 只看該作者
5#
發(fā)表于 2025-3-22 09:38:00 | 只看該作者
https://doi.org/10.1007/978-94-6300-818-1lization arises naturally due to the fact that real systems cannot be completely isolated from their environments and for this reason always experience external stochastic influence. Clearly, noise perturbation complicates the problem considerably.
6#
發(fā)表于 2025-3-22 14:33:28 | 只看該作者
7#
發(fā)表于 2025-3-22 18:06:36 | 只看該作者
https://doi.org/10.1007/978-1-4020-5910-0he computational point of view. And since we formulate the results in an abstract form, it is clear that for different types of precise models satisfying the imposed abstract hypotheses, these can be applied to the stabilization problem.
8#
發(fā)表于 2025-3-22 23:25:29 | 只看該作者
9#
發(fā)表于 2025-3-23 03:40:55 | 只看該作者
10#
發(fā)表于 2025-3-23 06:18:12 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 05:17
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
攀枝花市| 鱼台县| 高雄县| 陆河县| 汨罗市| 江山市| 城固县| 通海县| 驻马店市| 五大连池市| 隆安县| 盐亭县| 定安县| 建平县| 大石桥市| 汝南县| 平塘县| 河南省| 辽阳县| 丹棱县| 土默特左旗| 临城县| 望城县| 嘉义市| 石台县| 汶川县| 麻阳| 会昌县| 达州市| 贡山| 金坛市| 四川省| 陕西省| 清水县| 兰州市| 西宁市| 延寿县| 东阳市| 花莲县| 古蔺县| 尖扎县|