找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Integral Equations on Contours with Peaks; Vladimir G. Maz’ya,Alexander A. Soloviev,Tatyana S Book 2010 Birkh?user Basel 2010 Dir

[復(fù)制鏈接]
查看: 31824|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:26:31 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Boundary Integral Equations on Contours with Peaks
影響因子2023Vladimir G. Maz’ya,Alexander A. Soloviev,Tatyana S
視頻videohttp://file.papertrans.cn/191/190019/190019.mp4
發(fā)行地址The only book dedicated to boundary integral equations for non-Lipschitz domains.New method, different from the traditional approach based on the theories of Fredholm and singular integral operators.D
學(xué)科分類Operator Theory: Advances and Applications
圖書封面Titlebook: Boundary Integral Equations on Contours with Peaks;  Vladimir G. Maz’ya,Alexander A. Soloviev,Tatyana S Book 2010 Birkh?user Basel 2010 Dir
Pindex Book 2010
The information of publication is updating

書目名稱Boundary Integral Equations on Contours with Peaks影響因子(影響力)




書目名稱Boundary Integral Equations on Contours with Peaks影響因子(影響力)學(xué)科排名




書目名稱Boundary Integral Equations on Contours with Peaks網(wǎng)絡(luò)公開度




書目名稱Boundary Integral Equations on Contours with Peaks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Boundary Integral Equations on Contours with Peaks被引頻次




書目名稱Boundary Integral Equations on Contours with Peaks被引頻次學(xué)科排名




書目名稱Boundary Integral Equations on Contours with Peaks年度引用




書目名稱Boundary Integral Equations on Contours with Peaks年度引用學(xué)科排名




書目名稱Boundary Integral Equations on Contours with Peaks讀者反饋




書目名稱Boundary Integral Equations on Contours with Peaks讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:13:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:06:49 | 只看該作者
Asymptotic Formulae for Solutions of Boundary Integral Equations Near Peaks,of the corresponding potentials can be found from the boundary integral equations . where . is the value of the potential . at a boundary point, and . where . is the value of the normal derivative of the single layer potential
地板
發(fā)表于 2025-3-22 06:31:52 | 只看該作者
https://doi.org/10.1007/BFb0119075ress tensor with components σ., σ. and τ., which are considered as functions of the complex variables .=. + . and .. Here . and . are Cartesian coordinates of the initial position of points of an elastic body, whose displacement is the vector .(., .).
5#
發(fā)表于 2025-3-22 11:09:42 | 只看該作者
Integral Equations of Plane Elasticity in Domains with Peak,ress tensor with components σ., σ. and τ., which are considered as functions of the complex variables .=. + . and .. Here . and . are Cartesian coordinates of the initial position of points of an elastic body, whose displacement is the vector .(., .).
6#
發(fā)表于 2025-3-22 16:16:20 | 只看該作者
7#
發(fā)表于 2025-3-22 20:46:39 | 只看該作者
8#
發(fā)表于 2025-3-22 22:22:51 | 只看該作者
9#
發(fā)表于 2025-3-23 02:46:22 | 只看該作者
10#
發(fā)表于 2025-3-23 09:34:37 | 只看該作者
https://doi.org/10.1007/BFb0119075ms for the Lamé system can be reduced to a system of integral equations for which one gets results similar to those given in the previous chapters. In order to describe the stress and strain state of a body in plane elasticity, one uses the displacement vector .(., .) = (.(., .), .(., .)) and the st
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁津县| 苍溪县| 宁陵县| 喜德县| 白玉县| 商水县| 清河县| 治县。| 榆林市| 宜都市| 桃江县| 沁阳市| 乐至县| 民勤县| 龙游县| 那曲县| 遂溪县| 齐河县| 万荣县| 崇信县| 岳阳市| 修水县| 阳曲县| 黔西县| 铜陵市| 南投县| 大竹县| 嵊州市| 天祝| 瑞丽市| 靖安县| 西乌| 仁寿县| 青浦区| 拉孜县| 翼城县| 原阳县| 哈巴河县| 察哈| 宝山区| 分宜县|