找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Elements XIII; C. A. Brebbia,G. S. Gipson Book 1991 Computational Mechanics Publications 1991 Finite-Elemente-Methode.Rotor.Simul

[復(fù)制鏈接]
樓主: FORGE
21#
發(fā)表于 2025-3-25 06:55:01 | 只看該作者
22#
發(fā)表于 2025-3-25 09:20:30 | 只看該作者
23#
發(fā)表于 2025-3-25 12:07:15 | 只看該作者
24#
發(fā)表于 2025-3-25 19:27:15 | 只看該作者
On Using the Delta-Trigonometric Method to Solve the 2-D Neumann Potential Problemion of the second kind. We propose to solve this integral equation using a Petrov-Galerkin method with trigonometric polynomials as test functions, and a span of delta distributions centered at the boundary points as trial functions. For the exterior boundary value problem, the approximate potential
25#
發(fā)表于 2025-3-25 22:07:29 | 只看該作者
26#
發(fā)表于 2025-3-26 02:38:10 | 只看該作者
27#
發(fā)表于 2025-3-26 05:10:07 | 只看該作者
A Study of Flow Structures in a Cavity due to Double-Diffusive Natural Convection by Boundary Elemenand bottom walls. General time dependent results show the development of velocity, temperature and molar fraction fields. Boundary-domain integral method is used and the sub-domain technique combined with block-solver is employed to reduce computer requirements.
28#
發(fā)表于 2025-3-26 08:57:56 | 只看該作者
29#
發(fā)表于 2025-3-26 14:44:25 | 只看該作者
30#
發(fā)表于 2025-3-26 19:49:10 | 只看該作者
Explicit Forms of the Fundamental Solution Tensor and Singular Integrals for the 2D Primitive-Variabprimitive-variable Navier-Stokes boundary element formulation based on the method of Tosaka. Also, explicit forms of singular integrals are derived and presented. In this regard, series expansions of the fundamental solutions, which contain modified Bessel functions, are performed to enable integrat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玛纳斯县| 高要市| 全椒县| 大英县| 金堂县| 湘乡市| 济宁市| 伊宁县| 宁晋县| 海门市| 广水市| 蓝山县| 龙州县| 赤壁市| 舒城县| 大丰市| 林口县| 呼玛县| 西畴县| 长垣县| 武邑县| 长武县| 丹江口市| 彰化市| 威远县| 隆尧县| 华安县| 怀安县| 高台县| 天镇县| 东兴市| 博湖县| 虞城县| 黔西县| 阿拉善右旗| 兴仁县| 红安县| 水城县| 申扎县| 渭源县| 松江区|