找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Element Techniques in Computer-Aided Engineering; C. A. Brebbia Book 1984 Martinus Nijhoff Publishers, Dordrecht 1984 Numerical i

[復(fù)制鏈接]
樓主: 詞源法
21#
發(fā)表于 2025-3-25 06:13:02 | 只看該作者
22#
發(fā)表于 2025-3-25 11:21:17 | 只看該作者
23#
發(fā)表于 2025-3-25 14:26:06 | 只看該作者
A Choice of Fundamental Solutions,or interior points. However, for the boundary integral equations needed to determine the unspecified boundary data the singular point is itself on the boundary of the region and it is therefore not necessary to use the single valued fundamental solution in the representation.
24#
發(fā)表于 2025-3-25 16:35:50 | 只看該作者
Allan J. Greer,William J. KosslerB. It is convenient to write dq for the area element at ., in which case σ(.)dq defines the charge strength associated with dq. This generates an electrostatic potential g(.,.)σ(.)dq at any point . of space, where ..
25#
發(fā)表于 2025-3-25 21:43:31 | 只看該作者
Boundary Element Techniques in Computer-Aided Engineering978-94-009-6192-0Series ISSN 0168-132X
26#
發(fā)表于 2025-3-26 00:47:23 | 只看該作者
27#
發(fā)表于 2025-3-26 07:30:15 | 只看該作者
28#
發(fā)表于 2025-3-26 09:53:04 | 只看該作者
29#
發(fā)表于 2025-3-26 15:51:54 | 只看該作者
Further results on semi-simple Lie groups,t necessary to solve a system of simultaneous equations. A computer code, BEREPOT, has been written to apply the method for any geometry. An example comparing results obtained using BEREPOT with an exact solution is given.
30#
發(fā)表于 2025-3-26 20:19:15 | 只看該作者
https://doi.org/10.1007/978-3-658-28863-1inearities exist, or when the problem is anisotropic, linear isotropic stress analysis is undertaken as a first approximation in order to save the time and effort which is required when theses non-linear properties are taken into account.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
梁河县| 武功县| 莲花县| 新密市| 渝中区| 塔城市| 安岳县| 邹城市| 曲麻莱县| 会宁县| 南丹县| 临江市| 黎川县| 凯里市| 运城市| 禹州市| 娱乐| 濉溪县| 宾川县| 和硕县| 临海市| 张家界市| 鲜城| 射阳县| 余江县| 浮梁县| 渝北区| 甘孜县| 日土县| 连山| 庆阳市| 若羌县| 巴楚县| 恭城| 喜德县| 米易县| 泸溪县| 芦溪县| 建平县| 杭锦后旗| 德兴市|