找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Element Methods in Heat Transfer; L. C. Wrobel,C. A. Brebbia Book 1992 Computational Mechanics Publications 1992 algorithms.conve

[復(fù)制鏈接]
樓主: 相似
11#
發(fā)表于 2025-3-23 11:17:53 | 只看該作者
12#
發(fā)表于 2025-3-23 15:08:47 | 只看該作者
13#
發(fā)表于 2025-3-23 21:24:16 | 只看該作者
14#
發(fā)表于 2025-3-23 23:34:14 | 只看該作者
https://doi.org/10.1007/978-3-319-64061-7stablished finite element method (FEM). Recently, some authors indicated that the presence of any domain integrals undermines most advantages of the BEM. We believe that this is not true if the domain integral contains known quantities (such as body sources or initial values). The actual sources of
15#
發(fā)表于 2025-3-24 02:47:01 | 只看該作者
Nayoung Heo,Dudley L. Poston Jr.ssible viscous fluids is presented. The governing differential equations in terms of primitive variables by using velocity-pressure-temperature are transformed into the corresponding nonlinear system of integral equations. The related fundamental solution tensors for two-dimensional case are constru
16#
發(fā)表于 2025-3-24 09:18:23 | 只看該作者
17#
發(fā)表于 2025-3-24 14:35:42 | 只看該作者
Nayoung Heo,Dudley L. Poston Jr.the accuracy and efficiency of the integral equation method, several numerical examples of steady and unsteady two-dimensional natural convection problems in a square and some nonrectangular enclosures are illustrated.
18#
發(fā)表于 2025-3-24 16:58:25 | 只看該作者
19#
發(fā)表于 2025-3-24 19:17:32 | 只看該作者
20#
發(fā)表于 2025-3-25 02:12:18 | 只看該作者
Book 1992, radiation and others. Because of this,veryfew problems can be solved analytically and one generally has toresort to numerical analysis. The boundary element method is anumerical technique which has been receiving growing attention forsolving heat transfer problems because of its unique ability toc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 10:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀来县| 曲松县| 汕头市| 柳州市| 大同市| 响水县| 汨罗市| 定州市| 唐河县| 虹口区| 文昌市| 微博| 丰县| 留坝县| 泗阳县| 长宁县| 墨脱县| 马公市| 高密市| 新丰县| 石台县| 武胜县| 清镇市| 雷波县| 彭水| 凤阳县| 广丰县| 临颍县| 加查县| 全州县| 德钦县| 绥阳县| 临海市| 大田县| 马边| 济源市| 东平县| 高尔夫| 阳春市| 商城县| 香港|