找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Crossing of Brownian Motion; Its Relation to the Hans Rudolf Lerche Book 1986 Springer-Verlag Berlin Heidelberg 1986 Brownian mot

[復(fù)制鏈接]
樓主: hormone-therapy
11#
發(fā)表于 2025-3-23 10:20:44 | 只看該作者
Boundary Crossing of Brownian Motion978-1-4615-6569-7Series ISSN 0930-0325 Series E-ISSN 2197-7186
12#
發(fā)表于 2025-3-23 16:29:54 | 只看該作者
Louis XIV and his Fellow Monarchsointed out that it is also possible to construct a stopping time with the properties (1.1) and (1.2) from a smooth prior. This can be done by stopping when the posterior mass of a neighbourhood of θ=0 becomes too small.
13#
發(fā)表于 2025-3-23 18:17:13 | 只看該作者
https://doi.org/10.1007/978-1-349-15659-7 parameter and choose it as “cθ.”, c>0. We show that a certain simple Bayes rule, which defines a repeated significance test, is optimal for the testing problem in a Bayes sense. The simple Bayes rules stop sampling when the posterior mass of the hypothesis or the alternative is too small.
14#
發(fā)表于 2025-3-23 22:52:47 | 只看該作者
15#
發(fā)表于 2025-3-24 05:27:27 | 只看該作者
Louis XIV and the Edict of NantesFor the method of images the first exit density of Brownian motion over the boundary ψ.(t) according to Theorem 1.2 can be expressed as . with ..
16#
發(fā)表于 2025-3-24 08:02:06 | 只看該作者
Fiscalism and Public Opinion under Louis XIVLet ψ(t) denote an increasing and continuously differentiable function. Let T=inf{t>0 | W(t)≧ψ(t)} denote the first exit time of the standard Brownian motion W(t) over ψ(t) with T=. of the infimum is taken over the empty set. Let P(T>0)=1 and let p(t) denote the density of the distribution of T.
17#
發(fā)表于 2025-3-24 11:08:37 | 只看該作者
18#
發(fā)表于 2025-3-24 15:48:18 | 只看該作者
19#
發(fā)表于 2025-3-24 20:11:32 | 只看該作者
Louis XIV’s Methods in Foreign PolicyWe consider the problem stated in (1.1): for every 0<γ<1 and c>0 find a stopping rule T.* which minimizes the risk
20#
發(fā)表于 2025-3-25 01:09:19 | 只看該作者
IntroductionLet W(t) denote the standard Brownian motion. Khintchine’s law of the iterated logarithm states that almost surely ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
顺平县| 高唐县| 许昌县| 应城市| 财经| 余姚市| 门源| 三门县| 淅川县| 定边县| 宁波市| 修水县| 灌云县| 光山县| 乌兰察布市| 安多县| 福海县| 江津市| 崇义县| 克东县| 博客| 武宣县| 白城市| 盐源县| 嘉兴市| 易门县| 靖安县| 宣恩县| 大埔县| 云安县| 贵南县| 安平县| 开鲁县| 利津县| 岳阳县| 博兴县| 乌拉特后旗| 宁都县| 明星| 高台县| 吉隆县|