找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Algorithms for Multidimensional Inviscid Hyperbolic Flows; a GAMM-Workshop Karl F?rster Book 1978 Springer Fachmedien Wiesbaden 19

[復(fù)制鏈接]
樓主: 次要
31#
發(fā)表于 2025-3-26 21:34:16 | 只看該作者
A Second Order Finite Difference Integration Scheme Using the Compatibility Relationsery simple predictor and corrector step are combined to assure a second order accurate integration. The drawback of this scheme, as for most schemes, is that the background is purely mathematical. “Physical” properties of the equations, such as the existence of characteristic directions, are not tak
32#
發(fā)表于 2025-3-27 02:14:39 | 只看該作者
33#
發(fā)表于 2025-3-27 07:57:50 | 只看該作者
34#
發(fā)表于 2025-3-27 12:43:27 | 只看該作者
Concluding Remarks to the Workshop Sessionn of partial differential equations of the hyperbolic type. The search began about fifteen years ago, with the advent of high-speed computers and the birth of numerical gas dynamics, and it was performed, for many years, on purely mathematical grounds. The order of accuracy of a given scheme and its
35#
發(fā)表于 2025-3-27 14:17:50 | 只看該作者
36#
發(fā)表于 2025-3-27 19:37:24 | 只看該作者
Method of Characteristics with Simplicial Netsflow /7/ the exact values of all the flow field quantities are known. This special type of flow which includes subsonic, transonic and supersonic regions can be used as a standard for comparison of time-dependent techniques with respect to error growth.
37#
發(fā)表于 2025-3-27 23:49:48 | 只看該作者
Some Examples of Religious Ecstasy,flow /7/ the exact values of all the flow field quantities are known. This special type of flow which includes subsonic, transonic and supersonic regions can be used as a standard for comparison of time-dependent techniques with respect to error growth.
38#
發(fā)表于 2025-3-28 05:30:03 | 只看該作者
Boundary Algorithms for Multidimensional Inviscid Hyperbolic Flowsa GAMM-Workshop
39#
發(fā)表于 2025-3-28 09:14:05 | 只看該作者
40#
發(fā)表于 2025-3-28 14:23:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
米泉市| 阿巴嘎旗| 团风县| 赞皇县| 芒康县| 怀远县| 乐亭县| 龙井市| 呼图壁县| 万山特区| 新建县| 云梦县| 林周县| 隆德县| 玛沁县| 新竹县| 黔东| 桑日县| 乐山市| 弥勒县| 万山特区| 灵宝市| 广元市| 建水县| 广饶县| 包头市| 承德县| 游戏| 株洲市| 凉城县| 博白县| 呼和浩特市| 威信县| 万宁市| 文山县| 汉中市| 福安市| 怀集县| 根河市| 上饶市| 平果县|