找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bosonization of Interacting Fermions in Arbitrary Dimensions; Peter Kopietz Book 1997 Springer-Verlag Berlin Heidelberg 1997 Fermion-Syste

[復(fù)制鏈接]
查看: 26097|回復(fù): 46
樓主
發(fā)表于 2025-3-21 16:42:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Bosonization of Interacting Fermions in Arbitrary Dimensions
影響因子2023Peter Kopietz
視頻videohttp://file.papertrans.cn/190/189916/189916.mp4
學(xué)科分類Lecture Notes in Physics Monographs
圖書封面Titlebook: Bosonization of Interacting Fermions in Arbitrary Dimensions;  Peter Kopietz Book 1997 Springer-Verlag Berlin Heidelberg 1997 Fermion-Syste
影響因子The author presents in detail a new non-perturbative approach to the fermionic many-body problem, improving the bosonization technique and generalizing it to dimensions .d.1 via functional integration and Hubbard--Stratonovich transformations. In Part I he clearly illustrates the approximations and limitations inherent in higher-dimensional bosonization and derives the precise relation with diagrammatic perturbation theory. He shows how the non-linear terms in the energy dispersion can be systematically included into bosonization in arbitrary .d., so that in .d.1 the curvature of the Fermi surface can be taken into account. Part II gives applications to problems of physical interest. The book addresses researchers and graduate students in theoretical condensed matter physics.
Pindex Book 1997
The information of publication is updating

書目名稱Bosonization of Interacting Fermions in Arbitrary Dimensions影響因子(影響力)




書目名稱Bosonization of Interacting Fermions in Arbitrary Dimensions影響因子(影響力)學(xué)科排名




書目名稱Bosonization of Interacting Fermions in Arbitrary Dimensions網(wǎng)絡(luò)公開度




書目名稱Bosonization of Interacting Fermions in Arbitrary Dimensions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bosonization of Interacting Fermions in Arbitrary Dimensions被引頻次




書目名稱Bosonization of Interacting Fermions in Arbitrary Dimensions被引頻次學(xué)科排名




書目名稱Bosonization of Interacting Fermions in Arbitrary Dimensions年度引用




書目名稱Bosonization of Interacting Fermions in Arbitrary Dimensions年度引用學(xué)科排名




書目名稱Bosonization of Interacting Fermions in Arbitrary Dimensions讀者反饋




書目名稱Bosonization of Interacting Fermions in Arbitrary Dimensions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:12:58 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:15:16 | 只看該作者
https://doi.org/10.1007/978-3-662-48784-6ating the density-density correlation function within the RPA. We develop a general formalism for obtaining corrections to the Gaussian approximation, and show that these are nothing but the local-field corrections to the RPA. Some of the results presented in this chapter has been published in [1.36].
地板
發(fā)表于 2025-3-22 06:25:14 | 只看該作者
5#
發(fā)表于 2025-3-22 10:13:02 | 只看該作者
6#
發(fā)表于 2025-3-22 14:36:48 | 只看該作者
7#
發(fā)表于 2025-3-22 17:59:58 | 只看該作者
8#
發(fā)表于 2025-3-23 01:12:12 | 只看該作者
https://doi.org/10.1007/978-3-8350-5458-5lem in the work [.]. It turns out, however, that in physically relevant cases quantitatively correct results for the single-particle Green’s function can only be obtained if one retains the quadratic terms in the expansion of the energy dispersion close to the Fermi surface.
9#
發(fā)表于 2025-3-23 04:58:14 | 只看該作者
10#
發(fā)表于 2025-3-23 05:54:35 | 只看該作者
Fermions in a stochastic mediums equivalent with conventional perturbation theory based on the lowest order Born approximation. We also critically discuss the linearization of the energy dispersion, and give a simple example where this approximation leads to an unphysical result. Some of the calculations described in this chapter have been published in [.].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 17:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延安市| 嵊州市| 惠来县| 克拉玛依市| 久治县| 洞口县| 贵阳市| 昭通市| 衡阳县| 五大连池市| 陇川县| 来宾市| 雷波县| 孟津县| 桓仁| 驻马店市| 翁牛特旗| 理塘县| 安西县| 澄城县| 广东省| 八宿县| 泰来县| 治县。| 黔江区| 察雅县| 抚顺县| 白河县| 航空| 灵石县| 翼城县| 朔州市| 佛冈县| 密山市| 长沙县| 霞浦县| 宁河县| 北宁市| 临沧市| 上高县| 湖州市|