找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Born-Jordan Quantization; Theory and Applicati Maurice A. de Gosson Book 2016 Springer International Publishing Switzerland 2016 Grossmann-

[復(fù)制鏈接]
樓主: analgesic
21#
發(fā)表于 2025-3-25 05:45:52 | 只看該作者
22#
發(fā)表于 2025-3-25 09:09:38 | 只看該作者
Einleitung: OrientierungsmittelIn this chapter we initiate the study of continuity properties for Born–Jordan operators. We will discuss the global symbol classes introduced by Shubin; they are “global” in the sense that they satisfy growth estimates with an equal weighting on the position and momentum variables.
23#
發(fā)表于 2025-3-25 12:09:02 | 只看該作者
Introduction,December 14, 1900, is usually regarded as the official date of birth of quantum theory, because on that day Max Planck presented a memoir at a meeting of the Physical Society of Berlin in which he solved the enigma of the blackbody spectrum by introducing a new, fundamental, constant of Nature.
24#
發(fā)表于 2025-3-25 16:52:57 | 只看該作者
On the Quantization ProblemIn 1925 Max Born and Pascual Jordan set out to give a rigorous mathematical basis to Werner Heisenberg’s newly born “matrix mechanics”. This led them led to state a quantization rule for monomials.
25#
發(fā)表于 2025-3-25 23:16:30 | 只看該作者
Quantization of MonomialsIn this chapter we begin by collecting some facts about the quantization of monomials and polynomials, with a particular emphasis on the Weyl and Born–Jordan schemes.
26#
發(fā)表于 2025-3-26 03:30:45 | 只看該作者
27#
發(fā)表于 2025-3-26 05:01:13 | 只看該作者
The Weyl CorrespondenceThe Weyl correspondence, or Weyl quantization, is well-known both in harmonic analysis and quantum mechanics. It is part of the wider Weyl–Wigner–Moyal theory, where an emphasis on phase space techniques is made.
28#
發(fā)表于 2025-3-26 09:27:04 | 只看該作者
29#
發(fā)表于 2025-3-26 13:03:36 | 只看該作者
30#
發(fā)表于 2025-3-26 18:32:53 | 只看該作者
Metaplectic OperatorsThe metaplectic group is a unitary representation of the double cover of the symplectic group; it is thus characterized by the exactness of the sequence.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肇庆市| 自贡市| 蒙城县| 遵化市| 澎湖县| 克山县| 石台县| 康平县| 绥中县| 信丰县| 长宁区| 高阳县| 时尚| 乐都县| 天峻县| 兴化市| 阜南县| 江阴市| 改则县| 台湾省| 关岭| 威远县| 时尚| 烟台市| 屏南县| 洛川县| 新乡县| 崇信县| 锦州市| 中山市| 攀枝花市| 松原市| 南康市| 陆良县| 高邮市| 儋州市| 泰安市| 衡南县| 南昌县| 德化县| 巢湖市|