找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors; Jan H. Bruinier Book 2002 Springer-Verlag Berlin Heidelberg 2002 Autom

[復制鏈接]
查看: 41746|回復: 35
樓主
發(fā)表于 2025-3-21 18:44:17 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors
影響因子2023Jan H. Bruinier
視頻videohttp://file.papertrans.cn/190/189808/189808.mp4
發(fā)行地址Includes supplementary material:
學科分類Lecture Notes in Mathematics
圖書封面Titlebook: Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors;  Jan H. Bruinier Book 2002 Springer-Verlag Berlin Heidelberg 2002 Autom
影響因子Around 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2,n)$. These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. The fact that the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them interesting for geometric and arithmetic applications. In the present text the Borcherds‘ construction is extended to Maass wave forms and is used to study the Chern classes of Heegner divisors. A converse theorem for the lifting is proved.
Pindex Book 2002
The information of publication is updating

書目名稱Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors影響因子(影響力)




書目名稱Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors影響因子(影響力)學科排名




書目名稱Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors網(wǎng)絡公開度




書目名稱Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors網(wǎng)絡公開度學科排名




書目名稱Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors被引頻次




書目名稱Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors被引頻次學科排名




書目名稱Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors年度引用




書目名稱Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors年度引用學科排名




書目名稱Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors讀者反饋




書目名稱Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:25:56 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:46:41 | 只看該作者
地板
發(fā)表于 2025-3-22 08:20:46 | 只看該作者
5#
發(fā)表于 2025-3-22 12:25:12 | 只看該作者
Book 2002at the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them interesting for geometric and arithmetic applications. In the present text the Borcherds‘ construction is extended to Maass wave forms and is used to study the Chern classes of Heegner divisors. A converse theorem for the lifting is proved.
6#
發(fā)表于 2025-3-22 16:28:32 | 只看該作者
0075-8434 . These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. The fact that the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them i
7#
發(fā)表于 2025-3-22 18:57:20 | 只看該作者
Jan H. BruinierIncludes supplementary material:
8#
發(fā)表于 2025-3-22 22:04:13 | 只看該作者
9#
發(fā)表于 2025-3-23 02:18:47 | 只看該作者
10#
發(fā)表于 2025-3-23 08:36:19 | 只看該作者
Anirudh Gautam,Manish Agarwal,Mohd AmilAbstract not available
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
慈溪市| 新野县| 界首市| 道孚县| 淮滨县| 涟源市| 特克斯县| 景宁| 黎川县| 凤凰县| 柳江县| 罗定市| 鄢陵县| 胶州市| 资中县| 昌邑市| 昌黎县| 绥棱县| 夏河县| 大新县| 额敏县| 荥经县| 梁山县| 平安县| 乌拉特中旗| 德钦县| 青浦区| 崇州市| 永春县| 元阳县| 新昌县| 万山特区| 沁阳市| 阿坝县| 叶城县| 铜陵市| 东方市| 十堰市| 丹棱县| 宝坻区| 安溪县|