找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bootstrap Methods; With Applications in Gerhard Dikta,Marsel Scheer Textbook 2021 Springer Nature Switzerland AG 2021 Bootstrap based tests

[復(fù)制鏈接]
樓主: incoherent
11#
發(fā)表于 2025-3-23 12:19:40 | 只看該作者
12#
發(fā)表于 2025-3-23 16:23:04 | 只看該作者
The Continuous Ordered Median Problem established a general approach for GOF tests which is based on a marked empirical process (MEP), a standardized cumulative sum process obtained from the observed residuals. Resting upon the asymptotic limiting process of the MEP under the null hypothesis, Kolmogorov-Smirnov or Cramér-von Mises type
13#
發(fā)表于 2025-3-23 20:00:22 | 只看該作者
Linearizations and ReformulationsIn this introduction, we discuss the basic idea of the bootstrap procedure using a simple example. Furthermore, the Statistical Software R and its use in the context of this manuscript is briefly covered. Readers who are familiar with this material can skip this chapter.
14#
發(fā)表于 2025-3-23 23:08:21 | 只看該作者
15#
發(fā)表于 2025-3-24 05:30:35 | 只看該作者
https://doi.org/10.1007/978-3-030-73480-0Bootstrap based tests; Regression analysis; Survival analysis; Longitudinal data analyis; Experimental d
16#
發(fā)表于 2025-3-24 09:54:15 | 只看該作者
17#
發(fā)表于 2025-3-24 14:25:59 | 只看該作者
18#
發(fā)表于 2025-3-24 18:44:18 | 只看該作者
The Classical Bootstrap,f the classical bootstrap approximation as first published simultaneously by Bickel and Freedman (.) and Singh (.). The methods of proof in these two papers are different and we follow mainly the work of Singh (.) here. However, in Sect. ., we will go into more detail about a proof concept applied in Bickel and Freedman (.).
19#
發(fā)表于 2025-3-24 19:42:26 | 只看該作者
20#
發(fā)表于 2025-3-24 23:26:13 | 只看該作者
Stefan Nickel,Justo Puerto Albandozlater under certain correlation assumptions. Afterward, we allow other distributions for . like the negative-binomial distribution which lead to the classical generalized linear models. The chapter concludes with semi-parametric models, i.e., we do not explicitly assume a distribution for . but the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
杂多县| 建宁县| 疏附县| 通海县| 建平县| 宣城市| 仁寿县| 南靖县| 太仓市| 谢通门县| 余干县| 乐清市| 安阳市| 瑞昌市| 通辽市| 巴楚县| 林甸县| 池州市| 潼关县| 当阳市| 阿拉善左旗| 林周县| 田阳县| 焦作市| 台北市| 炎陵县| 东乡族自治县| 呈贡县| 霞浦县| 罗平县| 盐池县| 聊城市| 富宁县| 陈巴尔虎旗| 含山县| 云浮市| 大冶市| 木兰县| 南漳县| 界首市| 太和县|