找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boolean Representations of Simplicial Complexes and Matroids; John Rhodes,Pedro V. Silva Book 2015 Springer International Publishing Switz

[復(fù)制鏈接]
樓主: HAVEN
21#
發(fā)表于 2025-3-25 07:21:20 | 只看該作者
Shellability and Homotopy Type,In this section, we relate shellability of a simplicial complex . with certain properties of its graph of flats. We then use shellability to determine the homotopy type of the geometric realization . (see Sect.?A.5 in the Appendix) and compute its Betti numbers.
22#
發(fā)表于 2025-3-25 08:21:41 | 只看該作者
Operations on Simplicial Complexes,We consider in this chapter various natural operations on simplicial complexes and study how they relate to boolean representability. The particular case of restrictions will lead us to introduce prevarieties of simplicial complexes and finite basis problems.
23#
發(fā)表于 2025-3-25 11:59:24 | 只看該作者
Open Questions,As a general objective we would like to raise the results in this monograph from dimension 2 to dimension 3 and further.
24#
發(fā)表于 2025-3-25 17:25:36 | 只看該作者
25#
發(fā)表于 2025-3-25 22:14:35 | 只看該作者
26#
發(fā)表于 2025-3-26 02:53:35 | 只看該作者
Introduction,: it is well known that not all matroids admit a field representation [39]. Attempts have been made to replace fields by more general structures such as . [49] or . [18], but they still failed to cover all matroids.
27#
發(fā)表于 2025-3-26 05:16:03 | 只看該作者
Book 2015es featuring matroids as central to the theory. The book illustrates these new tools to study the classical theory of matroids as well as their important geometric connections. Moreover, many geometric and topological features of the theory of matroids find their counterparts in this extended contex
28#
發(fā)表于 2025-3-26 09:30:03 | 只看該作者
Book 2015t opens new lines of research within and beyond matroids. The geometric features and geometric/topological applications will appeal to geometers. Topologists who desire to perform algebraic topology computations will appreciate the algorithmic potential of boolean representable complexes..
29#
發(fā)表于 2025-3-26 15:20:37 | 只看該作者
30#
發(fā)表于 2025-3-26 19:00:31 | 只看該作者
Boolean Representations of Simplicial Complexes and Matroids
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威远县| 迁西县| 容城县| 孟连| 大渡口区| 阿鲁科尔沁旗| 江永县| 毕节市| 花莲市| 宣武区| 左云县| 丘北县| 外汇| 修文县| 扶绥县| 漳州市| 南漳县| 阿拉善左旗| 香格里拉县| 阿鲁科尔沁旗| 砚山县| 山西省| 永城市| 囊谦县| 平陆县| 长沙市| 乐业县| 昭平县| 昌都县| 桐梓县| 延长县| 西和县| 呼伦贝尔市| 蕉岭县| 邵阳市| 绍兴市| 绍兴县| 肃宁县| 望城县| 定南县| 淮南市|