找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bohmsche Mechanik als Grundlage der Quantenmechanik; Detlef Dürr Textbook 2001 Springer-Verlag Berlin Heidelberg 2001 Mathematik der Quant

[復(fù)制鏈接]
樓主: panache
31#
發(fā)表于 2025-3-26 23:53:13 | 只看該作者
32#
發(fā)表于 2025-3-27 02:52:50 | 只看該作者
33#
發(fā)表于 2025-3-27 07:41:10 | 只看該作者
Bohmsche Mechanik,sagen, damit die Sch?nheit zu Tage tritt. Es gibt viele Wege, auf diese neue Mechanik zu kommen. Ich gehe zun?chst einen etwas kompliziert aussehenden und beschreibe nachher in der Anmerkung 8.1.5 einen einfacher anmutenden Weg.
34#
發(fā)表于 2025-3-27 12:16:16 | 只看該作者
35#
發(fā)表于 2025-3-27 16:30:21 | 只看該作者
978-3-642-62544-2Springer-Verlag Berlin Heidelberg 2001
36#
發(fā)表于 2025-3-27 21:18:33 | 只看該作者
37#
發(fā)表于 2025-3-27 22:24:33 | 只看該作者
38#
發(fā)表于 2025-3-28 03:44:21 | 只看該作者
https://doi.org/10.1007/978-3-476-04090-9Ich konnte nicht umhin, dieses Kapitel auszuführen. Es gibt mir Gelegenheit, mehrere Dinge anzusprechen, die einerseits technisch wichtig sind (Gau?integrale, zentraler Grenzwertsatz und Pfadintegrale) und die andererseits auch Einsicht geben, wie man irreversibles Verhalten durch Skalierung studieren kann.
39#
發(fā)表于 2025-3-28 07:10:07 | 只看該作者
https://doi.org/10.1007/978-3-476-99266-6Die Schr?dingergleichung ist eine lineare Gleichung; lineare Superpositionen von L?sungen sind wieder L?sungen. Wir brauchen Quadratintegrierbarkeit der L?sungen, und dies führt auf einen Vektorraum mit Skalarprodukt als Raum der Wellenfunktionen. Hier ist die abstrakte Definition des Skalarproduktes:
40#
發(fā)表于 2025-3-28 12:33:07 | 只看該作者
,Die Bestimmung des Begriffs ?Realismus?,Wir gehen jetzt auf den Operatoren-Kalkül ein, der in . bereits angesprochen wurde. Dieser Kalkül ist ein leistungsf?higer Verwalter der Quantengleichgewichtsverteilung, und er führt uns in mathematische Gebiete, die zum Studium von Operatoren, wie dem Schr?dinger-Operator, von gro?er Wichtigkeit sind.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 05:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇左市| 伊川县| 乌鲁木齐县| 绩溪县| 项城市| 文安县| 巫溪县| 合水县| 昆明市| 公安县| 金堂县| 柘荣县| 都安| 冀州市| 英德市| 大埔县| 平山县| 张北县| 屏山县| 庆元县| 会理县| 东兴市| 滁州市| 离岛区| 平陆县| 廉江市| 申扎县| 甘南县| 宁海县| 青田县| 镇江市| 宁海县| 宜兴市| 青州市| 扶风县| 浪卡子县| 肥东县| 图们市| 汤阴县| 牡丹江市| 深州市|