找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bodies of Constant Width; An Introduction to C Horst Martini,Luis Montejano,Déborah Oliveros Textbook 2019 Springer Nature Switzerland AG 2

[復制鏈接]
樓主: 夸大
41#
發(fā)表于 2025-3-28 18:03:06 | 只看該作者
Figures of Constant Width,In this chapter, bodies of constant width in the plane are studied. We call them figures of constant width. In studying them, it is important to recall from Section?. that the concepts “normal”, “binormal”, “diameter”, and “diametral chord” coincide.
42#
發(fā)表于 2025-3-28 21:31:50 | 只看該作者
Bodies of Constant Width in Minkowski Spaces,In Euclidean space, the length of a segment depends only on its magnitude, never on its direction. However, for certain geometrical problems the need arises to give a different definition for the length of a segment that depends on both the magnitude and the direction.
43#
發(fā)表于 2025-3-28 23:30:59 | 只看該作者
44#
發(fā)表于 2025-3-29 03:27:33 | 只看該作者
Mixed Volumes,The notion of . represents a profound concept first discovered by Minkowski in 1900. In the letter?[838] he wrote to Hilbert explaining his discoveries as interesting and quite enlightening. As we can see below, this concept will allow us to prove several classical theorems on the volume of constant width bodies in a somewhat unexpected way.
45#
發(fā)表于 2025-3-29 11:08:30 | 只看該作者
Bodies of Constant Width in Analysis,One of the most fascinating theorems on 3-dimensional bodies of constant width, stated and proved by H. Minkowski in 1904, is presented in this section.
46#
發(fā)表于 2025-3-29 14:03:49 | 只看該作者
47#
發(fā)表于 2025-3-29 16:48:31 | 只看該作者
48#
發(fā)表于 2025-3-29 23:25:54 | 只看該作者
Concepts Related to Constant Width,A polytope . is . about a convex body . if . and each facet of . intersects .; i.e., every facet of . is contained in a support hyperplane of .. A polytope . is . in the convex body . if . and each of its vertices belongs to ..
49#
發(fā)表于 2025-3-30 03:34:38 | 只看該作者
50#
發(fā)表于 2025-3-30 06:14:59 | 只看該作者
Springer Nature Switzerland AG 2019
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 13:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
吉隆县| 大足县| 寿阳县| 山阴县| 桐乡市| 电白县| 修水县| 陈巴尔虎旗| 富民县| 京山县| 营山县| 名山县| 扎赉特旗| 永善县| 罗源县| 武陟县| 汪清县| 湄潭县| 井冈山市| 莱州市| 宁远县| 揭西县| 元谋县| 时尚| 余江县| 伊川县| 运城市| 湖州市| 永新县| 鹿邑县| 固始县| 富锦市| 海安县| 东源县| 永年县| 昭平县| 准格尔旗| 绍兴县| 厦门市| 青铜峡市| 大邑县|