找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Blocks of Finite Groups; The Hyperfocal Subal Lluís Puig Book 2002 Springer-Verlag Berlin Heidelberg 2002 Group.algebra.block.hyperfocal al

[復制鏈接]
樓主: 是英寸
31#
發(fā)表于 2025-3-26 21:28:31 | 只看該作者
https://doi.org/10.1007/978-3-211-72329-6ection, we consider the source algebra (.). of .; this .-interior algebra is the most important structure associated with the block . of .. We already know that . and (.). are Morita equivalent (see 6.10); actually, the source algebra determines all the current invariants associated with the block.
32#
發(fā)表于 2025-3-27 02:01:30 | 只看該作者
https://doi.org/10.1007/978-3-211-72329-6 commutative .-algebras, we can consider the so-called .. As usual, this function is a homomorphism from the additive structure to the multiplicative one; in particular, the multiplication by . ∈ ? becomes the .-th power, and thus this function is helpful in proving the existence of the .-th root of
33#
發(fā)表于 2025-3-27 07:50:48 | 只看該作者
https://doi.org/10.1007/978-3-662-11256-4Group; algebra; block; hyperfocal algebra; source algebra
34#
發(fā)表于 2025-3-27 10:12:43 | 只看該作者
978-3-642-07802-6Springer-Verlag Berlin Heidelberg 2002
35#
發(fā)表于 2025-3-27 14:29:26 | 只看該作者
36#
發(fā)表于 2025-3-27 19:26:57 | 只看該作者
Restriction and Induction of Divisors, we want to extend the ordinary restriction and the ordinary induction between the .and the OK-modules, to a restriction and an induction between the divisors of . and . on A. First of all, we clearly have . C .. and therefore we have a unique linear map
37#
發(fā)表于 2025-3-28 01:41:30 | 只看該作者
Local Pointed Groups on ,-interior ,-algebras,ows from Theorem 5.11 that we can find an inductively complete .-interior G-algebra ., together with a divisor w of . on . such that . ≈ .., so that all the questions concerning induction and restriction of divisors can be discussed in .. Hence, without loss of generality we may assume that . is inductively complete.
38#
發(fā)表于 2025-3-28 05:54:18 | 只看該作者
39#
發(fā)表于 2025-3-28 07:01:26 | 只看該作者
Pointed Groups on the Group Algebra,his .-interior algebra. Note that . is a symmetric .-algebra; more precisely, denote by ..: . → . the .-module homomorphism fulfilling ..(.) = ..,. for any . ∈ .; for any idempotents .′ of ., we have an .-module homomorphism
40#
發(fā)表于 2025-3-28 14:20:55 | 只看該作者
Source Algebras of Blocks,ection, we consider the source algebra (.). of .; this .-interior algebra is the most important structure associated with the block . of .. We already know that . and (.). are Morita equivalent (see 6.10); actually, the source algebra determines all the current invariants associated with the block. We only explain it for the fusions.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
迭部县| 海原县| 高淳县| 民和| 利川市| 五峰| 探索| 台中市| 基隆市| 盐源县| 宜川县| 荥经县| 习水县| 竹溪县| 渑池县| 陵川县| 田阳县| 湘阴县| 凤城市| 商南县| 都昌县| 临泽县| 金寨县| 阿瓦提县| 和静县| 汨罗市| 岚皋县| 凌云县| 曲周县| 利川市| 昭平县| 嘉义县| 抚州市| 安新县| 永兴县| 泰和县| 富民县| 家居| 平顶山市| 兴安县| 青河县|