找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Blocks of Finite Groups; The Hyperfocal Subal Lluís Puig Book 2002 Springer-Verlag Berlin Heidelberg 2002 Group.algebra.block.hyperfocal al

[復(fù)制鏈接]
樓主: 是英寸
31#
發(fā)表于 2025-3-26 21:28:31 | 只看該作者
https://doi.org/10.1007/978-3-211-72329-6ection, we consider the source algebra (.). of .; this .-interior algebra is the most important structure associated with the block . of .. We already know that . and (.). are Morita equivalent (see 6.10); actually, the source algebra determines all the current invariants associated with the block.
32#
發(fā)表于 2025-3-27 02:01:30 | 只看該作者
https://doi.org/10.1007/978-3-211-72329-6 commutative .-algebras, we can consider the so-called .. As usual, this function is a homomorphism from the additive structure to the multiplicative one; in particular, the multiplication by . ∈ ? becomes the .-th power, and thus this function is helpful in proving the existence of the .-th root of
33#
發(fā)表于 2025-3-27 07:50:48 | 只看該作者
https://doi.org/10.1007/978-3-662-11256-4Group; algebra; block; hyperfocal algebra; source algebra
34#
發(fā)表于 2025-3-27 10:12:43 | 只看該作者
978-3-642-07802-6Springer-Verlag Berlin Heidelberg 2002
35#
發(fā)表于 2025-3-27 14:29:26 | 只看該作者
36#
發(fā)表于 2025-3-27 19:26:57 | 只看該作者
Restriction and Induction of Divisors, we want to extend the ordinary restriction and the ordinary induction between the .and the OK-modules, to a restriction and an induction between the divisors of . and . on A. First of all, we clearly have . C .. and therefore we have a unique linear map
37#
發(fā)表于 2025-3-28 01:41:30 | 只看該作者
Local Pointed Groups on ,-interior ,-algebras,ows from Theorem 5.11 that we can find an inductively complete .-interior G-algebra ., together with a divisor w of . on . such that . ≈ .., so that all the questions concerning induction and restriction of divisors can be discussed in .. Hence, without loss of generality we may assume that . is inductively complete.
38#
發(fā)表于 2025-3-28 05:54:18 | 只看該作者
39#
發(fā)表于 2025-3-28 07:01:26 | 只看該作者
Pointed Groups on the Group Algebra,his .-interior algebra. Note that . is a symmetric .-algebra; more precisely, denote by ..: . → . the .-module homomorphism fulfilling ..(.) = ..,. for any . ∈ .; for any idempotents .′ of ., we have an .-module homomorphism
40#
發(fā)表于 2025-3-28 14:20:55 | 只看該作者
Source Algebras of Blocks,ection, we consider the source algebra (.). of .; this .-interior algebra is the most important structure associated with the block . of .. We already know that . and (.). are Morita equivalent (see 6.10); actually, the source algebra determines all the current invariants associated with the block. We only explain it for the fusions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
木兰县| 合阳县| 台前县| 南部县| 桦南县| 镇沅| 香格里拉县| 大渡口区| 黎城县| 图木舒克市| 航空| 鄂温| 墨竹工卡县| 崇信县| 金山区| 宜春市| 晋江市| 运城市| 察雅县| 沅江市| 南通市| 楚雄市| 大冶市| 东港市| 阳泉市| 三穗县| 方城县| 社会| 南雄市| 孙吴县| 泸溪县| 长岭县| 武鸣县| 嵩明县| 博野县| 邳州市| 丹江口市| 富宁县| 屏边| 运城市| 鄯善县|