找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Blockchain and Deep Learning; Future Trends and En Khaled R. Ahmed,Henry Hexmoor Book 2022 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
查看: 15985|回復(fù): 55
樓主
發(fā)表于 2025-3-21 18:23:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Blockchain and Deep Learning
期刊簡(jiǎn)稱Future Trends and En
影響因子2023Khaled R. Ahmed,Henry Hexmoor
視頻videohttp://file.papertrans.cn/190/189222/189222.mp4
發(fā)行地址Provides a comprehensive reference for blockchain and deep learning by covering all important topics.Introduces to blockchain and deep learning, explores and illustrates current and new trends that in
學(xué)科分類Studies in Big Data
圖書封面Titlebook: Blockchain and Deep Learning; Future Trends and En Khaled R. Ahmed,Henry Hexmoor Book 2022 The Editor(s) (if applicable) and The Author(s),
影響因子.This book introduces to blockchain and deep learning and explores and illustrates the current and new trends that integrate them. The pace and speeds for connectivity are certain on the ascend. Blockchain and deep learning are twin technologies that are integral to integrity and relevance of network contents. Since they are data-driven technologies, rapidly growing interests exist to incorporate them in efficient and secure data sharing and analysis applications. Blockchain and deep learning are sentinel contemporary research technologies. This book provides a comprehensive reference for blockchain and deep learning by covering all important topics. It identifies the bedrock principles and forward projecting methodologies that illuminate the trajectory of developments for the decades ahead..
Pindex Book 2022
The information of publication is updating

書目名稱Blockchain and Deep Learning影響因子(影響力)




書目名稱Blockchain and Deep Learning影響因子(影響力)學(xué)科排名




書目名稱Blockchain and Deep Learning網(wǎng)絡(luò)公開度




書目名稱Blockchain and Deep Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Blockchain and Deep Learning被引頻次




書目名稱Blockchain and Deep Learning被引頻次學(xué)科排名




書目名稱Blockchain and Deep Learning年度引用




書目名稱Blockchain and Deep Learning年度引用學(xué)科排名




書目名稱Blockchain and Deep Learning讀者反饋




書目名稱Blockchain and Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:03:56 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:04:38 | 只看該作者
地板
發(fā)表于 2025-3-22 05:18:55 | 只看該作者
5#
發(fā)表于 2025-3-22 10:50:28 | 只看該作者
6#
發(fā)表于 2025-3-22 13:53:37 | 只看該作者
7#
發(fā)表于 2025-3-22 19:40:25 | 只看該作者
https://doi.org/10.1007/978-3-030-83723-5e technology where enormous things such as sensors, softwares etc. are embedded together for enabling the connection as well as communication of data. With the evolution of Industrial IoT, the need for monitoring the things that are used for automation becomes one of the thrust among the industries.
8#
發(fā)表于 2025-3-23 00:58:25 | 只看該作者
Markus Schordan,Dirk Beyer,Irena Bojanovaehabilitation Research Center Aphasia Examination (CRRCAE, for Chinese-dialects speaking patients), Aachen Aphasia Test (AAT, for German-speaking patients) and Boston Diagnostic Aphasia Examination (BDAE, for English-speaking patients). These standards are utilized by a skilled speech-language patho
9#
發(fā)表于 2025-3-23 02:16:54 | 只看該作者
Tao Yue,Paolo Arcaini,Shaukat Ali working in line with each other and work not to get the better of each other but start working keeping arm to arm connected to each other‘s world will be different. GAN is a category of machine learning frameworks intended for generation of images in which neural networks challenge each other in fo
10#
發(fā)表于 2025-3-23 07:42:23 | 只看該作者
Jean-Christophe Filliatre,Andrei Paskevichta from heterogeneous sources help biologists to investigate the outcomes of their experiments. However, the heterogeneity of the different data sources, at the syntactic, schema, and semantic level, still holds considerable challenges for achieving interoperability among biological data sources. In
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安平县| 济阳县| 通辽市| 长武县| 开平市| 高陵县| 揭西县| 黑龙江省| 临高县| 玉田县| 宁南县| 余姚市| 肇庆市| 保靖县| 水城县| 南和县| 昌邑市| 河南省| 清镇市| 恩平市| 京山县| 博兴县| 昌乐县| 庄河市| 涡阳县| 大庆市| 锡林浩特市| 安西县| 阿荣旗| 曲松县| 灵璧县| 南汇区| 南和县| 洪江市| 本溪| 阳朔县| 新平| 武汉市| 昌吉市| 闽清县| 沁阳市|