找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Block Designs: A Randomization Approach; Volume II: Design Tadeusz Caliński,Sanpei Kageyama Book 2003 Springer-Verlag New York, Inc. 2003 V

[復(fù)制鏈接]
樓主: Ingrown-Toenail
11#
發(fā)表于 2025-3-23 09:58:37 | 只看該作者
12#
發(fā)表于 2025-3-23 13:58:38 | 只看該作者
978-0-387-95470-7Springer-Verlag New York, Inc. 2003
13#
發(fā)表于 2025-3-23 21:23:27 | 只看該作者
14#
發(fā)表于 2025-3-24 01:01:58 | 只看該作者
15#
發(fā)表于 2025-3-24 04:32:29 | 只看該作者
https://doi.org/10.1007/978-3-531-91041-3f treatment parameters. In the terminology introduced in Chapter 4 (Section 4.4) and recalled at the beginning of Chapter 6, this means that various cases of (.;.,…,.; 0)-EB designs, with . = 1,2,3 and more, for which . ≥ 1, will be of interest. The chapter begins with a general consideration on suc
16#
發(fā)表于 2025-3-24 10:26:45 | 只看該作者
Lernübertragungen in der Sportp?dagogik. Taking into account the practical point of view, the cases of (0;.,.,…,.;0)-EB designs, with . = 2, 3 and more, will be considered. At first, a general consideration on such designs is presented in Section 8.1, by recalling relevant results discussed in Volume I and by providing some corresponding
17#
發(fā)表于 2025-3-24 12:15:19 | 只看該作者
https://doi.org/10.1007/978-3-0348-6505-0eplicates one or more at a time. The present chapter is devoted only to those among (α,α., …,α.)-resolvable block designs which are a-resolvable for α ≥ 1, according to the concepts discussed in Section 6.0.3. A 1-resolvable block design is simply called resolvable in the usual sense of Bose (1942a)
18#
發(fā)表于 2025-3-24 15:24:24 | 只看該作者
19#
發(fā)表于 2025-3-24 19:21:40 | 只看該作者
https://doi.org/10.1007/978-3-531-91041-3roper and nonequireplicate, (iii) nonproper and equireplicate and (iv) nonproper and nonequireplicate, first for . = 1 (Section 7.2), then for . = 2 (Section 7.3), then for . = 3 (Section 7.4), and finally for . ≥ 3 (Section 7.5).
20#
發(fā)表于 2025-3-25 02:55:14 | 只看該作者
Designs with Full Efficiency for Some Contrasts,roper and nonequireplicate, (iii) nonproper and equireplicate and (iv) nonproper and nonequireplicate, first for . = 1 (Section 7.2), then for . = 2 (Section 7.3), then for . = 3 (Section 7.4), and finally for . ≥ 3 (Section 7.5).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绩溪县| 乳山市| 南靖县| 延津县| 沙洋县| 茌平县| 姚安县| 那曲县| 榆林市| 定西市| 教育| 太湖县| 盖州市| 通榆县| 通辽市| 曲阳县| 叶城县| 钦州市| 石城县| 正定县| 麻江县| 南平市| 陆川县| 陇南市| 奈曼旗| 肇州县| 阳春市| 滁州市| 开封市| 巴彦淖尔市| 辽中县| 沂南县| 深圳市| 通道| 临漳县| 建湖县| 枣庄市| 广水市| 江津市| 曲靖市| 平原县|