找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Blind Source Separation; Dependent Component Yong Xiang,Dezhong Peng,Zuyuan Yang Book 2015 The Author(s) 2015 Blind Source Separation (BSS

[復(fù)制鏈接]
查看: 17859|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:01:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Blind Source Separation
期刊簡稱Dependent Component
影響因子2023Yong Xiang,Dezhong Peng,Zuyuan Yang
視頻videohttp://file.papertrans.cn/190/189151/189151.mp4
發(fā)行地址First book addressing blind separation of mutually correlated sources.Presents novel blind source seperation algorithms that are applicable world applications.Written by leading experts in the field.I
學(xué)科分類SpringerBriefs in Electrical and Computer Engineering
圖書封面Titlebook: Blind Source Separation; Dependent Component  Yong Xiang,Dezhong Peng,Zuyuan Yang Book 2015 The Author(s) 2015 Blind Source Separation (BSS
影響因子This book provides readers a complete and self-contained set of knowledge about dependent source separation, including the latest development in this field. The book gives an overview on blind source separation where three promising blind separation techniques that can tackle mutually correlated sources are presented. The book further focuses on the non-negativity based methods, the time-frequency analysis based methods, and the pre-coding based methods, respectively.
Pindex Book 2015
The information of publication is updating

書目名稱Blind Source Separation影響因子(影響力)




書目名稱Blind Source Separation影響因子(影響力)學(xué)科排名




書目名稱Blind Source Separation網(wǎng)絡(luò)公開度




書目名稱Blind Source Separation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Blind Source Separation被引頻次




書目名稱Blind Source Separation被引頻次學(xué)科排名




書目名稱Blind Source Separation年度引用




書目名稱Blind Source Separation年度引用學(xué)科排名




書目名稱Blind Source Separation讀者反饋




書目名稱Blind Source Separation讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:41:33 | 只看該作者
,Einführung in den Problemhorizont,chieve blind source separation, where time-frequency analysis (TFA) will be used as a powerful tool for dependent component analysis (DCA). We will also show that for those non-sparse signals whose auto-source points and cross-source points do not overlap in the TF plane, they can be separated by us
板凳
發(fā)表于 2025-3-22 02:56:41 | 只看該作者
2191-8112 world applications.Written by leading experts in the field.IThis book provides readers a complete and self-contained set of knowledge about dependent source separation, including the latest development in this field. The book gives an overview on blind source separation where three promising blind s
地板
發(fā)表于 2025-3-22 07:28:28 | 只看該作者
https://doi.org/10.1007/978-3-658-18749-1l applications. Then, we give a brief overview of the traditional BSS methods for separating independent or uncorrelated source signals. After that, the BSS problem with mutually correlated sources are discussed, together with several mainstream BSS schemes and the corresponding algorithms.
5#
發(fā)表于 2025-3-22 09:44:06 | 只看該作者
Introduction,l applications. Then, we give a brief overview of the traditional BSS methods for separating independent or uncorrelated source signals. After that, the BSS problem with mutually correlated sources are discussed, together with several mainstream BSS schemes and the corresponding algorithms.
6#
發(fā)表于 2025-3-22 16:11:23 | 只看該作者
2191-8112 eparation techniques that can tackle mutually correlated sources are presented. The book further focuses on the non-negativity based methods, the time-frequency analysis based methods, and the pre-coding based methods, respectively.978-981-287-226-5978-981-287-227-2Series ISSN 2191-8112 Series E-ISSN 2191-8120
7#
發(fā)表于 2025-3-22 18:58:51 | 只看該作者
8#
發(fā)表于 2025-3-23 01:01:54 | 只看該作者
https://doi.org/10.1007/978-3-322-87373-6 before transmission such that BSS can be achieved at the receiver. Different from the method in [.], the precoding based methods do not impose any condition on the time-frequencys distributions of the sources.
9#
發(fā)表于 2025-3-23 04:48:38 | 只看該作者
Dependent Component Analysis Exploiting Nonnegativity and/or Time-Domain Sparsity,he nonnegative sparse representation (NSR) based methods, the convex geometry analysis (CGA) based methods, and the nonnegative matrix factorization (NMF) based methods. These methods either exploit the nonnegativity of the sources or both the nonnegativity and time-domain sparsity of the sources.
10#
發(fā)表于 2025-3-23 08:34:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
布尔津县| 大庆市| 潜山县| 汉寿县| 九江市| 阿巴嘎旗| 盐山县| 义马市| 满洲里市| 潜山县| 资兴市| 正宁县| 华池县| 波密县| 三门峡市| 阳春市| 崇文区| 彰武县| 永济市| 禄劝| 温宿县| 轮台县| 贵定县| 沂水县| 克山县| 临洮县| 蛟河市| 柯坪县| 东丰县| 肇庆市| 讷河市| 政和县| 沿河| 韶山市| 山西省| 柯坪县| 阿尔山市| 石城县| 远安县| 泾川县| 彩票|