找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Blaschke Products and Their Applications; Javad Mashreghi,Emmanuel Fricain Book 2013 Springer Science+Business Media New York 2013 Blaschk

[復(fù)制鏈接]
樓主: Julienne
11#
發(fā)表于 2025-3-23 10:36:48 | 只看該作者
12#
發(fā)表于 2025-3-23 14:14:50 | 只看該作者
Hyperbolic Wavelets and Multiresolution in the Hardy Space of the Upper Half Plane,aper we will introduce an analogous construction in the Hardy space of the upper half plane. The levels of the multiresolution are generated by localized Cauchy kernels on a special hyperbolic lattice in the upper half plane. This multiresolution has the following new aspects: the lattice which gene
13#
發(fā)表于 2025-3-23 21:46:41 | 只看該作者
14#
發(fā)表于 2025-3-24 01:56:23 | 只看該作者
J. Haring (staatl. Prüfungskommissar)mal” Blaschke product with the same critical points. These maximal Blaschke products have remarkable properties similar to those of Bergman space inner functions and they provide a natural generalization of the class of finite Blaschke products.
15#
發(fā)表于 2025-3-24 02:57:30 | 只看該作者
16#
發(fā)表于 2025-3-24 10:29:17 | 只看該作者
1069-5265 ons in differential equations are examined for the first tim.?Blaschke Products and Their Applications presents a collection of survey articles that examine Blaschke products and several of its applications to fields such as approximation theory, differential equations, dynamical systems, harmonic a
17#
發(fā)表于 2025-3-24 11:24:19 | 只看該作者
https://doi.org/10.1007/978-3-662-25407-3 Cauchy transforms into the normalized univalent functions. We show that for the subspace .. of Cauchy transforms the univalent functions so obtained have quasi-conformal extensions to all of the plane.
18#
發(fā)表于 2025-3-24 18:09:41 | 只看該作者
19#
發(fā)表于 2025-3-24 22:43:11 | 只看該作者
20#
發(fā)表于 2025-3-25 02:21:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗城| 东阳市| 农安县| 武安市| 柞水县| 稻城县| 泉州市| 平利县| 西盟| 余姚市| 镇原县| 谷城县| 富蕴县| 浠水县| 康乐县| 马龙县| 潼关县| 安泽县| 车险| 长顺县| 河源市| 彰化县| 海宁市| 平谷区| 镇原县| 班戈县| 巴塘县| 中超| 七台河市| 建阳市| 寻乌县| 留坝县| 台中市| 武鸣县| 勐海县| 同仁县| 大渡口区| 象山县| 赤峰市| 河东区| 乌鲁木齐县|