找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bisociative Knowledge Discovery; An Introduction to C Michael R. Berthold Book‘‘‘‘‘‘‘‘ 2012 The Editor(s) (if applicable) and the Author(s)

[復制鏈接]
查看: 29152|回復: 63
樓主
發(fā)表于 2025-3-21 20:09:51 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Bisociative Knowledge Discovery
期刊簡稱An Introduction to C
影響因子2023Michael R. Berthold
視頻videohttp://file.papertrans.cn/189/188885/188885.mp4
發(fā)行地址Presents the highlights of the BISON project.Serves as a great basis for future work in data mining.Includes supplementary material: .Includes supplementary material:
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Bisociative Knowledge Discovery; An Introduction to C Michael R. Berthold Book‘‘‘‘‘‘‘‘ 2012 The Editor(s) (if applicable) and the Author(s)
影響因子Modern knowledge discovery methods enable users to discover complex patterns of various types in large information repositories. However, the underlying assumption has always been that the data to which the methods are applied to originates from one domain. The focus of this book, and the BISON project from which the contributions are originating, is a network based integration of various types of data repositories and the development of new ways to analyse and explore the resulting gigantic information networks. Instead of finding well defined global or local patterns they wanted to find domain bridging associations which are, by definition, not well defined since they will be especially interesting if they are sparse and have not been encountered before. The 32 contributions presented in this state-of-the-art volume together with a detailed introduction to the book are organized in topical sections on bisociation; representation and network creation; network analysis; exploration; and applications and evaluation.
Pindex Book‘‘‘‘‘‘‘‘ 2012
The information of publication is updating

書目名稱Bisociative Knowledge Discovery影響因子(影響力)




書目名稱Bisociative Knowledge Discovery影響因子(影響力)學科排名




書目名稱Bisociative Knowledge Discovery網(wǎng)絡公開度




書目名稱Bisociative Knowledge Discovery網(wǎng)絡公開度學科排名




書目名稱Bisociative Knowledge Discovery被引頻次




書目名稱Bisociative Knowledge Discovery被引頻次學科排名




書目名稱Bisociative Knowledge Discovery年度引用




書目名稱Bisociative Knowledge Discovery年度引用學科排名




書目名稱Bisociative Knowledge Discovery讀者反饋




書目名稱Bisociative Knowledge Discovery讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:40:48 | 只看該作者
From Information Networks to Bisociative Information Networksr bisociative knowledge discoveries. Finally based on this data structure three different patterns are described that fulfill the requirements of a bisociation by connecting concepts from seemingly unrelated domains.
板凳
發(fā)表于 2025-3-22 01:44:57 | 只看該作者
Discovery of Novel Term Associations in a Document Collectiony dependent pairs that are not likely to be considered novel or interesting by the user..We present experimental results on two collections of documents: one extracted from Wikipedia, and one containing text mining articles with manually assigned term associations. The results indicate that the tpf–
地板
發(fā)表于 2025-3-22 05:42:42 | 只看該作者
5#
發(fā)表于 2025-3-22 11:39:43 | 只看該作者
6#
發(fā)表于 2025-3-22 15:15:17 | 只看該作者
7#
發(fā)表于 2025-3-22 17:28:33 | 只看該作者
8#
發(fā)表于 2025-3-23 00:42:53 | 只看該作者
9#
發(fā)表于 2025-3-23 04:55:51 | 只看該作者
10#
發(fā)表于 2025-3-23 09:29:56 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
格尔木市| 扎囊县| 旬阳县| 利津县| 祁门县| 六盘水市| 湟源县| 江源县| 武城县| 通山县| 确山县| 南城县| 榆社县| 呼图壁县| 永昌县| 田阳县| 泗阳县| 泊头市| 广南县| 保靖县| 商都县| 阳春市| 滦南县| 新野县| 柞水县| 阿尔山市| 新宁县| 新营市| 峨眉山市| 通许县| 泾川县| 当涂县| 榕江县| 阿克| 祁门县| 宁城县| 龙州县| 吉安县| 建瓯市| 金坛市| 高邑县|