找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Birational Geometry, Rational Curves, and Arithmetic; Fedor Bogomolov,Brendan Hassett,Yuri Tschinkel Book 2013 Springer Science+Business M

[復(fù)制鏈接]
樓主: CLOG
31#
發(fā)表于 2025-3-26 23:00:43 | 只看該作者
Robert Ebermann,Ibrahim ElmadfaThis survey is an invitation to recent developments in higher dimensional birational geometry.
32#
發(fā)表于 2025-3-27 01:58:05 | 只看該作者
33#
發(fā)表于 2025-3-27 08:06:40 | 只看該作者
Curves of Low Degrees on Fano Varieties,We survey the period maps of some Fano varieties and the geometry of their spaces of curves of low genera and degrees.
34#
發(fā)表于 2025-3-27 09:37:23 | 只看該作者
Uniruledness Criteria and Applications,We discuss uniruledness criteria on higher-dimensional varieties and their applications.
35#
發(fā)表于 2025-3-27 13:51:51 | 只看該作者
The Cone of Curves of K3 Surfaces Revisited,The following theorem was proved in [4] over the complex numbers. It turns out that the proof given there works with very small adjustments in arbitrary characteristic.
36#
發(fā)表于 2025-3-27 20:11:42 | 只看該作者
37#
發(fā)表于 2025-3-27 23:37:37 | 只看該作者
On the Ubiquity of Twisted Sheaves,We describe some recent work on the uses of twisted sheaves in algebra, arithmetic, and geometry. In particular, we touch on the role of twisted sheaves in:
38#
發(fā)表于 2025-3-28 06:05:06 | 只看該作者
Birational Geometry, Rational Curves, and Arithmetic978-1-4614-6482-2Series ISSN 2365-9564 Series E-ISSN 2365-9572
39#
發(fā)表于 2025-3-28 07:15:40 | 只看該作者
https://doi.org/10.1007/978-3-211-49348-9miliar with characteristic-.-geometry but who would like to see similarities, as well as differences, to complex geometry. More precisely, these notes are on algebraic surfaces in positive characteristic and assume familiarity with the complex side of this theory, say, on the level of Beauville’s book [9].
40#
發(fā)表于 2025-3-28 13:08:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 07:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赤城县| 丰原市| 民和| 海原县| 榆社县| 大厂| 霍林郭勒市| 哈密市| 银川市| 汕头市| 县级市| 钦州市| 抚州市| 疏附县| 淄博市| 孝义市| 大埔县| 黎川县| 乌拉特后旗| 通渭县| 正安县| 聊城市| 八宿县| 淮北市| 米泉市| 长沙县| 乌鲁木齐市| 吴堡县| 大庆市| 紫阳县| 尤溪县| 绵竹市| 两当县| 永和县| 大余县| 惠州市| 肇庆市| 永昌县| 广水市| 波密县| 文化|