找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Birational Geometry, Rational Curves, and Arithmetic; Fedor Bogomolov,Brendan Hassett,Yuri Tschinkel Book 2013 Springer Science+Business M

[復(fù)制鏈接]
樓主: CLOG
31#
發(fā)表于 2025-3-26 23:00:43 | 只看該作者
Robert Ebermann,Ibrahim ElmadfaThis survey is an invitation to recent developments in higher dimensional birational geometry.
32#
發(fā)表于 2025-3-27 01:58:05 | 只看該作者
33#
發(fā)表于 2025-3-27 08:06:40 | 只看該作者
Curves of Low Degrees on Fano Varieties,We survey the period maps of some Fano varieties and the geometry of their spaces of curves of low genera and degrees.
34#
發(fā)表于 2025-3-27 09:37:23 | 只看該作者
Uniruledness Criteria and Applications,We discuss uniruledness criteria on higher-dimensional varieties and their applications.
35#
發(fā)表于 2025-3-27 13:51:51 | 只看該作者
The Cone of Curves of K3 Surfaces Revisited,The following theorem was proved in [4] over the complex numbers. It turns out that the proof given there works with very small adjustments in arbitrary characteristic.
36#
發(fā)表于 2025-3-27 20:11:42 | 只看該作者
37#
發(fā)表于 2025-3-27 23:37:37 | 只看該作者
On the Ubiquity of Twisted Sheaves,We describe some recent work on the uses of twisted sheaves in algebra, arithmetic, and geometry. In particular, we touch on the role of twisted sheaves in:
38#
發(fā)表于 2025-3-28 06:05:06 | 只看該作者
Birational Geometry, Rational Curves, and Arithmetic978-1-4614-6482-2Series ISSN 2365-9564 Series E-ISSN 2365-9572
39#
發(fā)表于 2025-3-28 07:15:40 | 只看該作者
https://doi.org/10.1007/978-3-211-49348-9miliar with characteristic-.-geometry but who would like to see similarities, as well as differences, to complex geometry. More precisely, these notes are on algebraic surfaces in positive characteristic and assume familiarity with the complex side of this theory, say, on the level of Beauville’s book [9].
40#
發(fā)表于 2025-3-28 13:08:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 07:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乌珠穆沁旗| 繁昌县| 陆良县| 江永县| 潼关县| 峨眉山市| 广南县| 蓬溪县| 沙田区| 泰顺县| 托克托县| 博客| 定结县| 桂平市| 大宁县| 嘉义市| 湄潭县| 保康县| 宁晋县| 名山县| 佛教| 秦安县| 定安县| 怀柔区| 永平县| 杭州市| 黎平县| 北川| 连江县| 崇文区| 花垣县| 方正县| 十堰市| 申扎县| 陵水| 南木林县| 故城县| 京山县| 韶山市| 崇州市| 瓮安县|