找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Biostatistics With ‘R‘: A Guide for Medical Doctors; Marco Moscarelli Book 2023 The Editor(s) (if applicable) and The Author(s), under exc

[復(fù)制鏈接]
樓主: Coarctation
41#
發(fā)表于 2025-3-28 18:16:49 | 只看該作者
42#
發(fā)表于 2025-3-28 21:21:46 | 只看該作者
,Data Types in “R”,: numeric and non-numeric..However, they can also be described more specifically. Numeric variables with no decimals (e.g. number/s of bypasses performed) are defined as “integers”. Non-numeric variables with two levels (e.g. male or female) are called “factors”, and with more than two levels “chara
43#
發(fā)表于 2025-3-28 23:46:57 | 只看該作者
Data Distribution,f a standard normal distribution are and how to graphically and numerically ascertain if a variable is normally distributed. Histograms, quantile-quantile, boxplot and density plot are all important graphical tools to inspect for normality. This chapter will also explain the basics of ., the most us
44#
發(fā)表于 2025-3-29 04:12:04 | 只看該作者
45#
發(fā)表于 2025-3-29 07:31:07 | 只看該作者
46#
發(fā)表于 2025-3-29 14:37:23 | 只看該作者
47#
發(fā)表于 2025-3-29 19:31:34 | 只看該作者
Linear Regression,st in medicine are numeric, such as length of hospital stay, amount of bleeding, etc. The outcome of interest is also named the dependent or response variable. Intuitively, the independent variables or explanatory variables are the covariates that may influence the dependent variables. Independent v
48#
發(fā)表于 2025-3-29 21:23:41 | 只看該作者
Logistic Regression,is .. Logistic regression is frequently encountered in scientific medical papers, but is also pivotal for machine learning. We use logistic regression when we are interested in classification, to compute the probability of the outcome of interest occurring with certain predictors. Notably, the outco
49#
發(fā)表于 2025-3-30 02:17:35 | 只看該作者
Time-to-Event Analysis,e outcome is mortality. For the latter, the outcome can be any binary event (i.e. cancer relapse, re-hospitalisation, etc.). Time-to-event/survival analysis is somewhat similar to logistic regression, since the outcome of interest is binary. Yet the underlying math is different, and for survival ana
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台南县| 光山县| 南安市| 灵石县| 永城市| 乐山市| 华坪县| 万载县| 长子县| 永善县| 凉城县| 德钦县| 屯留县| 夏津县| 惠水县| 三都| 宿迁市| 新田县| 深水埗区| 紫阳县| 涿州市| 德清县| 邵东县| 临澧县| 南丹县| 六枝特区| 县级市| 石门县| 江山市| 孝义市| 常山县| 江城| 宾川县| 奉节县| 余江县| 迁西县| 新和县| 武鸣县| 静安区| 曲靖市| 龙岩市|