找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Biostatistics With ‘R‘: A Guide for Medical Doctors; Marco Moscarelli Book 2023 The Editor(s) (if applicable) and The Author(s), under exc

[復(fù)制鏈接]
樓主: Coarctation
41#
發(fā)表于 2025-3-28 18:16:49 | 只看該作者
42#
發(fā)表于 2025-3-28 21:21:46 | 只看該作者
,Data Types in “R”,: numeric and non-numeric..However, they can also be described more specifically. Numeric variables with no decimals (e.g. number/s of bypasses performed) are defined as “integers”. Non-numeric variables with two levels (e.g. male or female) are called “factors”, and with more than two levels “chara
43#
發(fā)表于 2025-3-28 23:46:57 | 只看該作者
Data Distribution,f a standard normal distribution are and how to graphically and numerically ascertain if a variable is normally distributed. Histograms, quantile-quantile, boxplot and density plot are all important graphical tools to inspect for normality. This chapter will also explain the basics of ., the most us
44#
發(fā)表于 2025-3-29 04:12:04 | 只看該作者
45#
發(fā)表于 2025-3-29 07:31:07 | 只看該作者
46#
發(fā)表于 2025-3-29 14:37:23 | 只看該作者
47#
發(fā)表于 2025-3-29 19:31:34 | 只看該作者
Linear Regression,st in medicine are numeric, such as length of hospital stay, amount of bleeding, etc. The outcome of interest is also named the dependent or response variable. Intuitively, the independent variables or explanatory variables are the covariates that may influence the dependent variables. Independent v
48#
發(fā)表于 2025-3-29 21:23:41 | 只看該作者
Logistic Regression,is .. Logistic regression is frequently encountered in scientific medical papers, but is also pivotal for machine learning. We use logistic regression when we are interested in classification, to compute the probability of the outcome of interest occurring with certain predictors. Notably, the outco
49#
發(fā)表于 2025-3-30 02:17:35 | 只看該作者
Time-to-Event Analysis,e outcome is mortality. For the latter, the outcome can be any binary event (i.e. cancer relapse, re-hospitalisation, etc.). Time-to-event/survival analysis is somewhat similar to logistic regression, since the outcome of interest is binary. Yet the underlying math is different, and for survival ana
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兖州市| 乡宁县| 宜兰县| 本溪| 苍溪县| 阜平县| 容城县| 运城市| 平潭县| 宁波市| 新泰市| 阿勒泰市| 娄烦县| 霍林郭勒市| 滕州市| 扶沟县| 山东省| 泰来县| 屯门区| 云安县| 信丰县| 宽甸| 周口市| 厦门市| 石嘴山市| 庄浪县| 慈利县| 辽源市| 陆良县| 汶上县| 同德县| 邛崃市| 海门市| 四会市| 芜湖县| 营山县| 武安市| 永安市| 柳州市| 邵阳县| 迭部县|