期刊全稱 | Biophysical Regulation of Vascular Differentiation and Assembly | 影響因子2023 | Sharon Gerecht | 視頻video | http://file.papertrans.cn/189/188344/188344.mp4 | 發(fā)行地址 | Introduces emerging approaches of biophysics for vascular regeneration.Describes advanced technologies for basic and translation research in vascular biology.Presents methodology of implementation of | 學(xué)科分類 | Biological and Medical Physics, Biomedical Engineering | 圖書封面 |  | 影響因子 | .Because of their ability to differentiate and develop into functional vasculature, stem cells hold tremendous promise for therapeutic applications. However, the scientific understanding and the ability to engineer these cellular systems is still in its early stages, and must advance significantly for the therapeutic potential of stem cells to be realized. Stem cell differentiation and function are exquisitely tuned by their microenvironment. This book will provide a unique perspective of how different aspect of the vasculature microenvironment regulates differentiation and assembly. Recent efforts to exploits modern engineering techniques to study and manipulate various biophysical cues will be described including: oxygen tension during adult and embryonic vasculogenesis (Semenza and Zandstra), extracellular matrix during tube morphogenesis and angiogenesis (Wirtz, Davis, Ingber), surface topography and modification (Chen and Gerecht), shear stress and cyclic strain effect on vascular assembly and maturation (Vunjak-Novakovic and Niklason), and three dimensional space for angio-andvasculogensis (Ferreria and Fischbach).. | Pindex | Book 20111st edition |
The information of publication is updating
|
|