找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Biometrics and ID Management; COST 2101 European W Claus Vielhauer,Jana Dittmann,Michael C. Fairhurst Conference proceedings 2011 Springer

[復(fù)制鏈接]
樓主: 作業(yè)
41#
發(fā)表于 2025-3-28 18:11:12 | 只看該作者
Dmitry Berdinsky,Prohrak Kruengthomyace is found when one final face class is retained. The standard UMIST and XM2VTS databases have been utilized to evaluate the performance of the proposed algorithm. Results show that it provides a good solution to the face classification problem.
42#
發(fā)表于 2025-3-28 19:46:05 | 只看該作者
43#
發(fā)表于 2025-3-29 02:45:57 | 只看該作者
44#
發(fā)表于 2025-3-29 05:06:15 | 只看該作者
45#
發(fā)表于 2025-3-29 09:27:04 | 只看該作者
46#
發(fā)表于 2025-3-29 13:10:30 | 只看該作者
Features Extracted Using Frequency-Time Analysis Approach from Nyquist Filter Bank and Gaussian FiltST database with 130 speakers using Gaussian mixture speaker model. Results reveal that, the feature sets extracted using frequency-time analysis approach performs significantly better compared to the feature set extracted using time-frequency analysis approach.
47#
發(fā)表于 2025-3-29 17:32:44 | 只看該作者
Entropy-Based Iterative Face Classificationce is found when one final face class is retained. The standard UMIST and XM2VTS databases have been utilized to evaluate the performance of the proposed algorithm. Results show that it provides a good solution to the face classification problem.
48#
發(fā)表于 2025-3-29 20:18:20 | 只看該作者
Local Binary LDA for Face Recognitionn accuracy. The experimental results demonstrate the feasibility of the method for face recognition as follows: on XM2VTS face image database, a recognition accuracy of 96.44% is obtained using LBLDA, which is an improvement over LDA (94.41%). LBLDA can also outperform LDA in terms of computation speed.
49#
發(fā)表于 2025-3-30 00:15:50 | 只看該作者
0302-9743 andsystems, handwriting authentication, speaker authentication, face recognition, multibiometric authentication, and on biometrics and forensics.978-3-642-19529-7978-3-642-19530-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
50#
發(fā)表于 2025-3-30 07:27:21 | 只看該作者
https://doi.org/10.1007/978-3-642-19530-3biometric cryptosystems; biometric recognition; face classification; face verification; fingerprint anal
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上栗县| 和顺县| 油尖旺区| 连平县| 磐石市| 扬中市| 镇远县| 凤庆县| 东至县| 东阿县| 建宁县| 兴海县| 宝清县| 永寿县| 林口县| 双辽市| 胶南市| 万源市| 秦安县| 开江县| 新干县| 临清市| 竹溪县| 汨罗市| 会同县| 恭城| 紫金县| 河源市| 昭苏县| 盈江县| 中方县| 镇原县| 阳信县| 简阳市| 玉门市| 偏关县| 三亚市| 大城县| 泌阳县| 佛坪县| 伊春市|