找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biometric Recognition; 8th Chinese Conferen Zhenan Sun,Shiguan Shan,YiLong Yin Conference proceedings 2013 Springer International Publishin

[復(fù)制鏈接]
樓主: GERM
21#
發(fā)表于 2025-3-25 05:51:42 | 只看該作者
https://doi.org/10.1007/978-1-4020-8891-9ects the latent temporal information and represents dynamic changes occurred in facial muscle actions. The SVM classifier is finally used to predict the expression type. The experiments are carried out on the BU-4DFE database, and the achieved results demonstrate the effectiveness of the proposed method.
22#
發(fā)表于 2025-3-25 08:25:59 | 只看該作者
https://doi.org/10.1007/978-1-4020-8891-9tation based classification with regularized least square (Kernel CRC_RLS, KCRC_RLS) by implicitly mapping the sample into high-dimensional space via kernel tricks. The experimental results on FERET face database demonstrate that Kernel CRC_RLS is effective in classification, leading to promising performance.
23#
發(fā)表于 2025-3-25 12:00:36 | 只看該作者
Robust Face Recognition Based on Spatially-Weighted Sparse Coding face images are often strongly correlated, spatial weights are smoothed to enforce similar values at adjacent locations. Extensive experiments on benchmark face databases demonstrate that our method is very effective in dealing with face occlusion, corruption, lighting and expression changes, etc.
24#
發(fā)表于 2025-3-25 19:35:13 | 只看該作者
Non-negative Sparse Representation Based on Block NMF for Face Recognitioneature fusion approach via combining NSR-feature with BNMF-feature. The proposed algorithms are tested on ORL and FERET face databases. Experimental results show that the proposed NSR+BNMF method greatly outperforms two single-feature based methods, namely NSR method and BNMF method.
25#
發(fā)表于 2025-3-25 21:55:16 | 只看該作者
26#
發(fā)表于 2025-3-26 00:39:21 | 只看該作者
LPQ Based Static and Dynamic Modeling of Facial Expressions in 3D Videosects the latent temporal information and represents dynamic changes occurred in facial muscle actions. The SVM classifier is finally used to predict the expression type. The experiments are carried out on the BU-4DFE database, and the achieved results demonstrate the effectiveness of the proposed method.
27#
發(fā)表于 2025-3-26 04:43:04 | 只看該作者
Kernel Collaborative Representation with Regularized Least Square for Face Recognitiontation based classification with regularized least square (Kernel CRC_RLS, KCRC_RLS) by implicitly mapping the sample into high-dimensional space via kernel tricks. The experimental results on FERET face database demonstrate that Kernel CRC_RLS is effective in classification, leading to promising performance.
28#
發(fā)表于 2025-3-26 12:09:15 | 只看該作者
29#
發(fā)表于 2025-3-26 15:35:46 | 只看該作者
https://doi.org/10.1007/978-3-319-75263-1t into sub images. Then, standard deviation is used to compute the adaptive weighted fusion of features. Finally, the nearest classifier is adopted for recognition. The experiments on the ORL and Yale face databases demonstrate the effectiveness of the proposed method.
30#
發(fā)表于 2025-3-26 17:36:08 | 只看該作者
https://doi.org/10.1007/0-387-32186-1cision boundaries with the aim to improve recognition accuracy. Experiments on the CMU-PIE database show that?ASLBP outperforms LBP and?SLBP. Although ASLBP is designed to increase the performance of?SLBP, the proposed learning process can be generalized to other LBP variants.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
城步| 平乐县| 德钦县| 绍兴市| 盐源县| 陕西省| 佛山市| 和顺县| 新邵县| 得荣县| 尉氏县| 山东| 肥东县| 西贡区| 浦东新区| 苏尼特左旗| 康平县| 上林县| 香格里拉县| 青岛市| 武威市| 平阳县| 上犹县| 湟中县| 周宁县| 阳山县| 银川市| 西吉县| 南涧| 乐都县| 红桥区| 三亚市| 安溪县| 贺州市| 茶陵县| 金沙县| 通江县| 石泉县| 留坝县| 达尔| 和静县|