找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biometric Recognition; 8th Chinese Conferen Zhenan Sun,Shiguan Shan,YiLong Yin Conference proceedings 2013 Springer International Publishin

[復(fù)制鏈接]
樓主: GERM
21#
發(fā)表于 2025-3-25 05:51:42 | 只看該作者
https://doi.org/10.1007/978-1-4020-8891-9ects the latent temporal information and represents dynamic changes occurred in facial muscle actions. The SVM classifier is finally used to predict the expression type. The experiments are carried out on the BU-4DFE database, and the achieved results demonstrate the effectiveness of the proposed method.
22#
發(fā)表于 2025-3-25 08:25:59 | 只看該作者
https://doi.org/10.1007/978-1-4020-8891-9tation based classification with regularized least square (Kernel CRC_RLS, KCRC_RLS) by implicitly mapping the sample into high-dimensional space via kernel tricks. The experimental results on FERET face database demonstrate that Kernel CRC_RLS is effective in classification, leading to promising performance.
23#
發(fā)表于 2025-3-25 12:00:36 | 只看該作者
Robust Face Recognition Based on Spatially-Weighted Sparse Coding face images are often strongly correlated, spatial weights are smoothed to enforce similar values at adjacent locations. Extensive experiments on benchmark face databases demonstrate that our method is very effective in dealing with face occlusion, corruption, lighting and expression changes, etc.
24#
發(fā)表于 2025-3-25 19:35:13 | 只看該作者
Non-negative Sparse Representation Based on Block NMF for Face Recognitioneature fusion approach via combining NSR-feature with BNMF-feature. The proposed algorithms are tested on ORL and FERET face databases. Experimental results show that the proposed NSR+BNMF method greatly outperforms two single-feature based methods, namely NSR method and BNMF method.
25#
發(fā)表于 2025-3-25 21:55:16 | 只看該作者
26#
發(fā)表于 2025-3-26 00:39:21 | 只看該作者
LPQ Based Static and Dynamic Modeling of Facial Expressions in 3D Videosects the latent temporal information and represents dynamic changes occurred in facial muscle actions. The SVM classifier is finally used to predict the expression type. The experiments are carried out on the BU-4DFE database, and the achieved results demonstrate the effectiveness of the proposed method.
27#
發(fā)表于 2025-3-26 04:43:04 | 只看該作者
Kernel Collaborative Representation with Regularized Least Square for Face Recognitiontation based classification with regularized least square (Kernel CRC_RLS, KCRC_RLS) by implicitly mapping the sample into high-dimensional space via kernel tricks. The experimental results on FERET face database demonstrate that Kernel CRC_RLS is effective in classification, leading to promising performance.
28#
發(fā)表于 2025-3-26 12:09:15 | 只看該作者
29#
發(fā)表于 2025-3-26 15:35:46 | 只看該作者
https://doi.org/10.1007/978-3-319-75263-1t into sub images. Then, standard deviation is used to compute the adaptive weighted fusion of features. Finally, the nearest classifier is adopted for recognition. The experiments on the ORL and Yale face databases demonstrate the effectiveness of the proposed method.
30#
發(fā)表于 2025-3-26 17:36:08 | 只看該作者
https://doi.org/10.1007/0-387-32186-1cision boundaries with the aim to improve recognition accuracy. Experiments on the CMU-PIE database show that?ASLBP outperforms LBP and?SLBP. Although ASLBP is designed to increase the performance of?SLBP, the proposed learning process can be generalized to other LBP variants.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
承德市| 崇礼县| 会理县| 河津市| 邢台市| 肥西县| 阿拉善左旗| 龙陵县| 太白县| 金乡县| 霍林郭勒市| 吉木乃县| 永州市| 舞阳县| 呼伦贝尔市| 儋州市| 济源市| 浑源县| 武山县| 渑池县| 彝良县| 龙里县| 霸州市| 博兴县| 常山县| 南江县| 比如县| 姜堰市| 西青区| 永济市| 陵川县| 获嘉县| 广东省| 寻甸| 富蕴县| 望都县| 临潭县| 宾川县| 五峰| 石嘴山市| 大宁县|