找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biometric Recognition; 8th Chinese Conferen Zhenan Sun,Shiguan Shan,YiLong Yin Conference proceedings 2013 Springer International Publishin

[復(fù)制鏈接]
樓主: GERM
21#
發(fā)表于 2025-3-25 05:51:42 | 只看該作者
https://doi.org/10.1007/978-1-4020-8891-9ects the latent temporal information and represents dynamic changes occurred in facial muscle actions. The SVM classifier is finally used to predict the expression type. The experiments are carried out on the BU-4DFE database, and the achieved results demonstrate the effectiveness of the proposed method.
22#
發(fā)表于 2025-3-25 08:25:59 | 只看該作者
https://doi.org/10.1007/978-1-4020-8891-9tation based classification with regularized least square (Kernel CRC_RLS, KCRC_RLS) by implicitly mapping the sample into high-dimensional space via kernel tricks. The experimental results on FERET face database demonstrate that Kernel CRC_RLS is effective in classification, leading to promising performance.
23#
發(fā)表于 2025-3-25 12:00:36 | 只看該作者
Robust Face Recognition Based on Spatially-Weighted Sparse Coding face images are often strongly correlated, spatial weights are smoothed to enforce similar values at adjacent locations. Extensive experiments on benchmark face databases demonstrate that our method is very effective in dealing with face occlusion, corruption, lighting and expression changes, etc.
24#
發(fā)表于 2025-3-25 19:35:13 | 只看該作者
Non-negative Sparse Representation Based on Block NMF for Face Recognitioneature fusion approach via combining NSR-feature with BNMF-feature. The proposed algorithms are tested on ORL and FERET face databases. Experimental results show that the proposed NSR+BNMF method greatly outperforms two single-feature based methods, namely NSR method and BNMF method.
25#
發(fā)表于 2025-3-25 21:55:16 | 只看該作者
26#
發(fā)表于 2025-3-26 00:39:21 | 只看該作者
LPQ Based Static and Dynamic Modeling of Facial Expressions in 3D Videosects the latent temporal information and represents dynamic changes occurred in facial muscle actions. The SVM classifier is finally used to predict the expression type. The experiments are carried out on the BU-4DFE database, and the achieved results demonstrate the effectiveness of the proposed method.
27#
發(fā)表于 2025-3-26 04:43:04 | 只看該作者
Kernel Collaborative Representation with Regularized Least Square for Face Recognitiontation based classification with regularized least square (Kernel CRC_RLS, KCRC_RLS) by implicitly mapping the sample into high-dimensional space via kernel tricks. The experimental results on FERET face database demonstrate that Kernel CRC_RLS is effective in classification, leading to promising performance.
28#
發(fā)表于 2025-3-26 12:09:15 | 只看該作者
29#
發(fā)表于 2025-3-26 15:35:46 | 只看該作者
https://doi.org/10.1007/978-3-319-75263-1t into sub images. Then, standard deviation is used to compute the adaptive weighted fusion of features. Finally, the nearest classifier is adopted for recognition. The experiments on the ORL and Yale face databases demonstrate the effectiveness of the proposed method.
30#
發(fā)表于 2025-3-26 17:36:08 | 只看該作者
https://doi.org/10.1007/0-387-32186-1cision boundaries with the aim to improve recognition accuracy. Experiments on the CMU-PIE database show that?ASLBP outperforms LBP and?SLBP. Although ASLBP is designed to increase the performance of?SLBP, the proposed learning process can be generalized to other LBP variants.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南汇区| 拉萨市| 东丽区| 西林县| 平陆县| 潜江市| 浦北县| 万年县| 西平县| 北票市| 垫江县| 定州市| 涡阳县| 贵阳市| 哈巴河县| 湘潭市| 韩城市| 贵南县| 沁水县| 嘉定区| 辉县市| 潜江市| 嵊泗县| 扎兰屯市| 黑山县| 朝阳区| 五寨县| 精河县| 平罗县| 镇安县| 清新县| 确山县| 玉环县| 温泉县| 济源市| 房产| 红安县| 吉林省| 连山| 荆门市| 南木林县|