找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biometric Recognition; 16th Chinese Confere Weihong Deng,Jianjiang Feng,Zhaofeng He Conference proceedings 2022 The Editor(s) (if applicabl

[復(fù)制鏈接]
樓主: 小天使
21#
發(fā)表于 2025-3-25 04:00:45 | 只看該作者
An Overview and Forecast of Biometric Recognition Technology Used in Forensic Sciencependent intellectual property rights. Biometric recognition technologies require increasing investment and targeted niche research if they are to play a more significant role in forensic science in the future.
22#
發(fā)表于 2025-3-25 08:36:24 | 只看該作者
23#
發(fā)表于 2025-3-25 14:26:13 | 只看該作者
Estimation of Gaze-Following Based on Transformer and the Guiding Offsetng offset to facilitate the training of gaze pathway and we add the channel attention module. We use Transformer to capture the relationship between the person and the predicted target in the heatmap pathway. Experimental results have demonstrated the effectiveness of our solution on GazeFollow dataset and DL Gaze dataset.
24#
發(fā)表于 2025-3-25 17:38:18 | 只看該作者
https://doi.org/10.1057/9780230502666 only has global and local correlation to achieve accurate extraction of veins, but also enables the model to maintain its lightweight characteristics. Our approach achieves good results on the public finger vein dataset SDU-FV, MMCBNU_6000.
25#
發(fā)表于 2025-3-25 22:34:34 | 只看該作者
26#
發(fā)表于 2025-3-26 03:28:50 | 只看該作者
A Lightweight Segmentation Network Based on Extraction only has global and local correlation to achieve accurate extraction of veins, but also enables the model to maintain its lightweight characteristics. Our approach achieves good results on the public finger vein dataset SDU-FV, MMCBNU_6000.
27#
發(fā)表于 2025-3-26 04:56:00 | 只看該作者
28#
發(fā)表于 2025-3-26 10:12:32 | 只看該作者
29#
發(fā)表于 2025-3-26 14:46:11 | 只看該作者
Conclusion: Community and Transcendencedifferent types of adversarial faces. Experimental results over adversarial examples and face forgery attacks show that the proposed detection method is effective with better generalizability and more adversarially robust comparing with previous methods.
30#
發(fā)表于 2025-3-26 19:04:01 | 只看該作者
Disentanglement of?Deep Features for?Adversarial Face Detectiondifferent types of adversarial faces. Experimental results over adversarial examples and face forgery attacks show that the proposed detection method is effective with better generalizability and more adversarially robust comparing with previous methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐边县| 来安县| 隆化县| 廉江市| 白城市| 济源市| 桃园市| 榆社县| 腾冲县| 三台县| 五原县| 康乐县| 威海市| 措美县| 浙江省| 米林县| 临海市| 特克斯县| 康乐县| 南投市| 香港| 贵阳市| 海门市| 商洛市| 三门县| 涡阳县| 上思县| 阿克陶县| 谷城县| 嘉义县| 库尔勒市| 藁城市| 长垣县| 宜城市| 黑龙江省| 镇雄县| 远安县| 桐庐县| 离岛区| 读书| 新巴尔虎左旗|