找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biometric Recognition; 17th Chinese Confere Wei Jia,Wenxiong Kang,Jun Wang Conference proceedings 2023 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
樓主: patch-test
31#
發(fā)表于 2025-3-26 23:00:27 | 只看該作者
32#
發(fā)表于 2025-3-27 03:25:42 | 只看該作者
33#
發(fā)表于 2025-3-27 08:10:35 | 只看該作者
Affective Prior Topology Graph Guided Facial Expression Recognitionly concentrated on emotion classification or sentiment levels, disregarding the crucial dependencies between these factors that are vital for perceiving human emotions. To address this problem, we propose a novel affective priori topology graph network (AptGATs). AptGATs explicitly captures the topo
34#
發(fā)表于 2025-3-27 12:21:34 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/b/image/188172.jpg
35#
發(fā)表于 2025-3-27 17:40:56 | 只看該作者
Gilles Barthe,Benjamin Grégoire,Colin Ribaistration methods need sufficient amount of labeled fingerprint pairs which are difficult to obtain. In addition, the training data itself may not include enough variety of fingerprints thus limit such methods’ performance. In this work, we propose an unsupervised end-to-end framework for fingerprin
36#
發(fā)表于 2025-3-27 18:34:07 | 只看該作者
37#
發(fā)表于 2025-3-28 00:00:17 | 只看該作者
More on Generalized Derivatives,mprint recognition methods focus only feature representation and matching under an assumption that palmprint images are high-quality, while practical palmprint images are usually captured by various cameras under diverse backgrounds, heavily reducing the quality of palmprint images. To address this,
38#
發(fā)表于 2025-3-28 05:22:44 | 只看該作者
39#
發(fā)表于 2025-3-28 07:05:22 | 只看該作者
https://doi.org/10.1057/978-1-137-58746-6ly, many existing methods have shown relatively satisfying performance, but there are still several problems such as the limited patterns extracted by single feature extraction approach and the huge gap between hand-crafted feature-based approaches and deep learning feature-based approaches. To this
40#
發(fā)表于 2025-3-28 12:44:36 | 只看該作者
Open-ended Procedural Semanticscies in finger vein (FV) recognition, there still remain some unresolved issues, including high model complexity and memory cost, as well as insufficient training samples. To address these issues, we propose an unsupervised spiking neural network for finger vein recognition (hereinafter dubbed ‘FV-S
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐津县| 饶平县| 四川省| 昂仁县| 山阴县| 仁怀市| 隆昌县| 雷州市| 嫩江县| 和田县| 衡阳市| 靖宇县| 商南县| 简阳市| 无为县| 革吉县| 仁化县| 西城区| 荥阳市| 且末县| 临江市| 潍坊市| 澄迈县| 蒙自县| 宁海县| 岗巴县| 永登县| 新河县| 古田县| 彭州市| 扶风县| 徐水县| 和顺县| 宾阳县| 鄂温| 托里县| 依兰县| 余姚市| 罗山县| 屏山县| 庆阳市|