找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Biometric Recognition; 14th Chinese Confere Zhenan Sun,Ran He,Zhenhua Guo Conference proceedings 2019 Springer Nature Switzerland AG 2019 a

[復(fù)制鏈接]
樓主: risky-drinking
31#
發(fā)表于 2025-3-26 23:04:18 | 只看該作者
Fingerprint Presentation Attack Detection via Analyzing Fingerprint Pairsll use of the difference in materials between the fake fingerprint and the real fingerprint, we proposed to utilize two images of a finger for classification. A pair of fingerprints are first aligned using a deformable registration algorithm and then are fed into MobileNet-v2 networks to perform the
32#
發(fā)表于 2025-3-27 01:23:36 | 只看該作者
Finger Vein Recognition Based on Double-Orientation Coding Histogramin recognition has great research significance. In the paper, we offer a double orientation coding (DOC) method for finger vein recognition to represent the direction of vein texture using two orientation values. To strengthen the discrimination ability and robustness of the direction description, w
33#
發(fā)表于 2025-3-27 09:06:21 | 只看該作者
Fingerprint Classification Based on Lightweight Neural Networksn model has many problems such as complicated operation, lots of parameters, massive data. In this paper, we present a lightweight neural network for automatic extraction features and classification of fingerprint images. Fingerprint Region of Interest (ROI) images is regarded as the input of the ne
34#
發(fā)表于 2025-3-27 12:54:39 | 只看該作者
35#
發(fā)表于 2025-3-27 16:47:38 | 只看該作者
A Novel Method for Finger Vein Recognitionve shown a good performance. However, these systems usually adopt such large networks or complex step-by-step processes that they cannot be applied to the hardware platform with limited computing power and small memory. To address this limitation, this research proposes a finger vein recognition net
36#
發(fā)表于 2025-3-27 19:02:57 | 只看該作者
37#
發(fā)表于 2025-3-28 01:51:04 | 只看該作者
38#
發(fā)表于 2025-3-28 06:11:22 | 只看該作者
39#
發(fā)表于 2025-3-28 06:37:51 | 只看該作者
Global and Local Spatial-Attention Network for Isolated Gesture Recognitionnformation from multi-modality inputs. To this end, we propose a novel attention-based method with 3D convolutional neural network (CNN) to recognize isolated gesture recognition. It includes two parts. The first one is a global and local spatial-attention network (GLSANet), which takes into account
40#
發(fā)表于 2025-3-28 11:30:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大关县| 许昌县| 漳浦县| 龙口市| 天镇县| 蓬溪县| 宜阳县| 布尔津县| 云梦县| 台湾省| 新河县| 万安县| 南城县| 孝昌县| 沛县| 四子王旗| 永德县| 武功县| 荥经县| 广宁县| 信阳市| 南通市| 宁明县| 宝应县| 米林县| 郁南县| 长治市| 保康县| 青铜峡市| 桐城市| 吉林省| 西充县| 浑源县| 晋江市| 银川市| 镇江市| 弋阳县| 安康市| 阜阳市| 淮北市| 广西|