找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Biomedical Signals Based Computer-Aided Diagnosis for Neurological Disorders; M. Murugappan,Yuvaraj Rajamanickam Book 2022 The Editor(s) (

[復(fù)制鏈接]
樓主: Coronary-Artery
31#
發(fā)表于 2025-3-26 22:42:35 | 只看該作者
Analysis of Intramuscular Coherence of Lower Limb Muscle Activities Using Magnitude Squared Coherenning about the central nervous system’s techniques for controlling motor task execution. The main aim of this study was to compare the intramuscular coherence of lower limb muscles during the various tasks. The study utilized a publicly available full-body mobile brain-body imaging database for the
32#
發(fā)表于 2025-3-27 03:54:37 | 只看該作者
Biomedical Signals Based Computer-Aided Diagnosis for Neurological Disorders
33#
發(fā)表于 2025-3-27 08:57:14 | 只看該作者
34#
發(fā)表于 2025-3-27 10:28:43 | 只看該作者
to neurological disorder diagnosis. The book provides the basics of biomedical signal processing, optimization methods, and machine learning/deep learning techniques used in designing CAD systems for neurological disorders..978-3-030-97847-1978-3-030-97845-7
35#
發(fā)表于 2025-3-27 17:28:38 | 只看該作者
Abnormal EEG Detection Using Time-Frequency Images and Convolutional Neural Network,figurable CNN structures, namely, DenseNet, SeizureNet, and Inception-ResNet-V2, to extract deep learned features. Finally, an extreme learning machine (ELM)-based classifier detects the input TF images. The proposed STFT-based CNN method is evaluated using the Temple University Hospital (TUH) abnor
36#
發(fā)表于 2025-3-27 21:28:34 | 只看該作者
Physical Action Categorization Pertaining to Certain Neurological Disorders Using Machine Learning- of life for such patients or providing better treatment. The framework makes use of various features from various signal signatures with contribution from time domain, frequency domain, and inter-channel statistics. Next, we conducted a comparative analysis of SVM, 3-NN, and ensemble learning with
37#
發(fā)表于 2025-3-27 22:49:39 | 只看該作者
A Comparative Study on EEG Features for Neonatal Seizure Detection,as analyzed using XGBoost and support vector machine (SVM) classifier with fourfold cross-validation. We found that entropy plays a significant role in the discrimination of seizure and non-seizure segments. We achieved an average AUC of 0.84 and 0.76 using XGBoost and SVM classifiers, respectively.
38#
發(fā)表于 2025-3-28 03:05:24 | 只看該作者
39#
發(fā)表于 2025-3-28 09:26:39 | 只看該作者
40#
發(fā)表于 2025-3-28 11:05:53 | 只看該作者
Investigation of the Brain Activation Pattern of Stroke Patients and Healthy Individuals During Hap Complexity parameters were lower in LBD and RBD in the frontal regions of the alpha band. The significant difference channels between the emotions were analyzed by statistical analysis using ANOVA. Moreover, the features of each subject group were used for emotion classification by the application
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳东县| 永城市| 博乐市| 资兴市| 梁山县| 时尚| 故城县| 雅安市| 尼木县| 齐齐哈尔市| 通渭县| 西安市| 嘉祥县| 义马市| 丹寨县| 黄浦区| 敦化市| 平南县| 永胜县| 拜城县| 沁源县| 福鼎市| 方城县| 陇南市| 札达县| 嘉义县| 东光县| 青川县| 秦安县| 康定县| 永丰县| 涡阳县| 陵川县| 西城区| 延川县| 松原市| 清远市| 乌鲁木齐市| 鹿泉市| 吴忠市| 凭祥市|