找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biomedical Image Registration; 10th International W Alessa Hering,Julia Schnabel,Daniel Rueckert Conference proceedings 2022 The Editor(s)

[復(fù)制鏈接]
查看: 13295|回復(fù): 54
樓主
發(fā)表于 2025-3-21 18:20:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Biomedical Image Registration
期刊簡稱10th International W
影響因子2023Alessa Hering,Julia Schnabel,Daniel Rueckert
視頻videohttp://file.papertrans.cn/189/188055/188055.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Biomedical Image Registration; 10th International W Alessa Hering,Julia Schnabel,Daniel Rueckert Conference proceedings 2022 The Editor(s)
影響因子This book constitutes the refereed proceedings of the 10th International Workshop on Biomedical Image Registration, WBIR 2020, which was supposed to be held in Munich, Germany, in July 2022..The 11 full and poster papers together with 17 short papers included in this volume were carefully reviewed and selected from 32 submitted papers. The papers are organized in the following topical sections: optimization, deep learning architectures, neuroimaging, diffeomorphisms, uncertainty, topology and metrics..
Pindex Conference proceedings 2022
The information of publication is updating

書目名稱Biomedical Image Registration影響因子(影響力)




書目名稱Biomedical Image Registration影響因子(影響力)學(xué)科排名




書目名稱Biomedical Image Registration網(wǎng)絡(luò)公開度




書目名稱Biomedical Image Registration網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Biomedical Image Registration被引頻次




書目名稱Biomedical Image Registration被引頻次學(xué)科排名




書目名稱Biomedical Image Registration年度引用




書目名稱Biomedical Image Registration年度引用學(xué)科排名




書目名稱Biomedical Image Registration讀者反饋




書目名稱Biomedical Image Registration讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:31:37 | 只看該作者
,Building the ‘Great March’ of Progress,earning LDDMM method for pairs of 3D mono-modal images based on Generative Adversarial Networks. The method is inspired by the recent literature on deformable image registration with adversarial learning. We combine the best performing generative, discriminative, and adversarial ingredients from the
板凳
發(fā)表于 2025-3-22 03:43:22 | 只看該作者
地板
發(fā)表于 2025-3-22 06:09:03 | 只看該作者
The Dynamics of Capitalist Development,y when predicting domain-shifted input data. Multi-atlas segmentation utilizes multiple available sample annotations which are deformed and propagated to the target domain via multimodal image registration and fused to a consensus label afterwards but subsequent network training with the registered
5#
發(fā)表于 2025-3-22 11:21:47 | 只看該作者
,Coming to the Forefront, 1883–1931,istration of these images. Stationary Velocity Field (SVF) based non-rigid registration algorithms are widely used for registration. However, these methods cover only a limited degree of deformations. We address this limitation and define an approximate metric space for the manifold of diffeomorphis
6#
發(fā)表于 2025-3-22 15:56:51 | 只看該作者
7#
發(fā)表于 2025-3-22 20:56:20 | 只看該作者
https://doi.org/10.1057/9780230512320linear registration to reduce the inter-individual variability. This assumption is challenged here. Regional anatomical and connection patterns cluster into statistically distinct types. An advanced analysis proposed here leads to a deeper understanding of the governing principles of cortical variab
8#
發(fā)表于 2025-3-22 23:15:13 | 只看該作者
https://doi.org/10.1007/978-3-319-64692-3ging step because of the heterogeneous content of the human abdomen which implies complex deformations. In this work, we focus on accurately registering a subset of organs of interest. We register organ surface point clouds, as may typically be extracted from an automatic segmentation pipeline, by e
9#
發(fā)表于 2025-3-23 02:06:08 | 只看該作者
https://doi.org/10.1007/978-3-319-64692-3udes. The recent Learn2Reg medical registration benchmark has demonstrated that single-scale U-Net architectures, such as VoxelMorph that directly employ a spatial transformer loss, often do not generalise well beyond the cranial vault and fall short of state-of-the-art performance for abdominal or
10#
發(fā)表于 2025-3-23 05:56:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永年县| 台南市| 谷城县| 沁阳市| 门头沟区| 山丹县| 花莲县| 石棉县| 石首市| 岚皋县| 广元市| 湖口县| 喜德县| 沭阳县| 宽甸| 三台县| 宣武区| 滦平县| 桑植县| 邹城市| 西藏| 夏津县| 卢龙县| 江安县| 拜泉县| 富顺县| 霍林郭勒市| 惠来县| 延吉市| 苍溪县| 凤冈县| 长沙县| 育儿| 富锦市| 桃江县| 隆回县| 墨脱县| 临城县| 铁力市| 铜陵市| 卢氏县|