找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biomedical Image Registration; 6th International Wo Sébastien Ourselin,Marc Modat Conference proceedings 2014 Springer International Publis

[復(fù)制鏈接]
樓主: polysomnography
11#
發(fā)表于 2025-3-23 09:44:11 | 只看該作者
Non-rigid Groupwise Image Registration for Motion Compensation in Quantitative MRIm, black-blood variable flip-angle .. mapping in the carotid artery region, and apparent diffusion coefficient (ADC) mapping in the abdomen. The method was compared to a conventional pairwise alignment that uses a mutual information similarity measure. Registration accuracy was evaluated by computin
12#
發(fā)表于 2025-3-23 17:31:21 | 只看該作者
13#
發(fā)表于 2025-3-23 20:49:03 | 只看該作者
https://doi.org/10.1057/9780230508439 a public dataset (CUMC12). Our proposed approach achieves a similar level of accuracy as other state-of-the-art methods but with processing times as short as 1.5 minutes. We also demonstrate preliminary qualitative results in the time-sensitive registration contexts of registering MR brain volumes
14#
發(fā)表于 2025-3-24 00:57:52 | 只看該作者
15#
發(fā)表于 2025-3-24 03:12:18 | 只看該作者
Anuradha Sood,Tarun Sharma,Aradhna Sharmaggregation and a decomposition of similarity and regularisation term into two convex optimisation steps. This approach enables non-parametric registration with billions of degrees of freedom with computation times of less than a minute. We apply our method to two different common medical image regis
16#
發(fā)表于 2025-3-24 07:29:26 | 只看該作者
17#
發(fā)表于 2025-3-24 11:20:46 | 只看該作者
18#
發(fā)表于 2025-3-24 16:10:52 | 只看該作者
https://doi.org/10.1007/978-3-030-60262-8ethods was evaluated on two publicly available image datasets, one of cerebral angiograms and the other of a spine cadaver, using standardized evaluation methodology. Results showed that the proposed method outperformed the current state-of-the-art methods and achieved registration accuracy of 0.5 m
19#
發(fā)表于 2025-3-24 20:25:12 | 只看該作者
20#
發(fā)表于 2025-3-25 00:33:59 | 只看該作者
,In and Out of Cabinet, 1964–2002,n initialization and rely on the robustness of machine learning to the outliers and label updates via pyramidal deformable registration to gain better learning and predictions. In this sense, the proposed methodology has potential to be adapted in other learning problems as the manual labelling is u
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 04:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兰溪市| 海盐县| 沈阳市| 安阳县| 迁安市| 亚东县| 杨浦区| 康乐县| 佛山市| 马关县| 华坪县| 宁晋县| 杭州市| 鄄城县| 黄冈市| 河源市| 平江县| 通海县| 饶平县| 朝阳市| 峨边| 泸定县| 孝昌县| 南和县| 汝阳县| 蒙城县| 阿瓦提县| 德阳市| 广灵县| 凤冈县| 西和县| 扎鲁特旗| 赫章县| 霍城县| 怀仁县| 吉安市| 昭觉县| 宜宾市| 乌恰县| 和田县| 赞皇县|