找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biomedical Engineering Systems and Technologies; 13th International J Xuesong Ye,Filipe Soares,Hugo Gamboa Conference proceedings 2021 Spri

[復(fù)制鏈接]
查看: 14407|回復(fù): 56
樓主
發(fā)表于 2025-3-21 19:15:30 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Biomedical Engineering Systems and Technologies
期刊簡稱13th International J
影響因子2023Xuesong Ye,Filipe Soares,Hugo Gamboa
視頻videohttp://file.papertrans.cn/189/188018/188018.mp4
學(xué)科分類Communications in Computer and Information Science
圖書封面Titlebook: Biomedical Engineering Systems and Technologies; 13th International J Xuesong Ye,Filipe Soares,Hugo Gamboa Conference proceedings 2021 Spri
影響因子This book constitutes extended and revised versions of the selected papers from the 13th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2020, held in Valletta, Malta, in February 2020..The 29 revised and extended full papers presented were carefully reviewed and selected from a total of 363 submissions. The papers are organized in topical sections on biomedical electronics and devices; bioimaging; bioinformatics models, methods and algorithms; bio-inspired systems and signal processing; health informatic.
Pindex Conference proceedings 2021
The information of publication is updating

書目名稱Biomedical Engineering Systems and Technologies影響因子(影響力)




書目名稱Biomedical Engineering Systems and Technologies影響因子(影響力)學(xué)科排名




書目名稱Biomedical Engineering Systems and Technologies網(wǎng)絡(luò)公開度




書目名稱Biomedical Engineering Systems and Technologies網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Biomedical Engineering Systems and Technologies被引頻次




書目名稱Biomedical Engineering Systems and Technologies被引頻次學(xué)科排名




書目名稱Biomedical Engineering Systems and Technologies年度引用




書目名稱Biomedical Engineering Systems and Technologies年度引用學(xué)科排名




書目名稱Biomedical Engineering Systems and Technologies讀者反饋




書目名稱Biomedical Engineering Systems and Technologies讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:09:06 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:33:25 | 只看該作者
地板
發(fā)表于 2025-3-22 07:42:23 | 只看該作者
5#
發(fā)表于 2025-3-22 09:12:05 | 只看該作者
Non-invasive Optical Methods in Quantitative Minimal Erythema Dose Assessment in Vivo: Comparison ofty based on the calculation of minimal erythema dose (MED) is still performed visually, which is subjective, and associated with high variability of the results and frequent errors when it done be untrained personnel. The application of non-invasive quantitaitve methods such as laser fluorescence sp
6#
發(fā)表于 2025-3-22 15:00:06 | 只看該作者
Deep Learning for the Automated Feature Labelling of 3-Dimensional Imaged Placentalinked to chronic disease risk and quality of lifelong health. 2-D analysis can be challenging, and spatial interaction between structures can be easily missed, but obtaining 3-D structural images is extremely labour-intensive due to the high level of rigorous manual processing required. Deep neural
7#
發(fā)表于 2025-3-22 20:33:26 | 只看該作者
Estimating the False Positive Prediction Rate in Automated Volumetric Measurements of Malignant Pleu, exhibiting an irregular shape with high surface-to-volume ratio. Reliable measurements are important to assessing treatment efficacy, however these tumour characteristics make manual measurements time consuming, and prone to intra- and inter-observer variation. Previously we described a fully auto
8#
發(fā)表于 2025-3-22 22:31:03 | 只看該作者
Combining Registration Errors and Supervoxel Classification for Unsupervised Brain Anomaly Detection as the large variability in shape, size, and location among different anomalies. Even though discriminative models (supervised learning) are commonly used for this task, they require quite high-quality annotated training images, which are absent for most medical image analysis problems. Inspired by
9#
發(fā)表于 2025-3-23 03:21:10 | 只看該作者
10#
發(fā)表于 2025-3-23 05:41:18 | 只看該作者
Efficient Algorithms for Co-folding of Multiple RNAsent RNA sequences. For each permutation of the . strands the structure prediction problem is algorithmically very similar – but not identical – to folding of a single, contiguous RNA. The differences arise from two sources: First, “nicks”, i.e., the transitions from one to the next piece of RNA, nee
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西盟| 阳春市| 汽车| 镇江市| 陇南市| 庆元县| 冕宁县| 盐池县| 龙里县| 金塔县| 贵德县| 平乡县| 游戏| 泽普县| 邻水| 肥东县| 喀什市| 新巴尔虎右旗| 甘德县| 萍乡市| 务川| 钟山县| 黄大仙区| 会昌县| 马尔康县| 平定县| 桓台县| 瑞安市| 蕉岭县| 苏尼特右旗| 天全县| 龙胜| 延津县| 黔西县| 同心县| 隆德县| 合作市| 西畴县| 屯昌县| 大悟县| 东至县|