找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligen; Aditya Khamparia,Deepak Gupta,Valent

[復(fù)制鏈接]
查看: 44355|回復(fù): 41
樓主
發(fā)表于 2025-3-21 17:14:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligen
影響因子2023Aditya Khamparia,Deepak Gupta,Valentina E. Balas
視頻videohttp://file.papertrans.cn/189/188004/188004.mp4
發(fā)行地址Discusses Explainable (XAI) and Responsive Artificial Intelligence (RAI) for biomedical, healthcare applications.Explains both positive as well as negative findings obtained by explainable AI techniqu
學(xué)科分類Intelligent Systems Reference Library
圖書封面Titlebook: Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligen;  Aditya Khamparia,Deepak Gupta,Valent
影響因子The book discusses Explainable (XAI) and Responsive Artificial Intelligence (RAI) for biomedical and healthcare applications. It will discuss the advantages in dealing with big and complex data by using explainable AI concepts in the field of biomedical sciences. The book explains both positive as well as negative findings obtained by explainable AI techniques. It features real time experiences by physicians and medical staff for applied deep learning based solutions. The book will be extremely useful for researchers and practitioners in advancing their studies.
Pindex Book 2022
The information of publication is updating

書目名稱Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligen影響因子(影響力)




書目名稱Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligen影響因子(影響力)學(xué)科排名




書目名稱Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligen網(wǎng)絡(luò)公開度




書目名稱Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligen網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligen被引頻次




書目名稱Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligen被引頻次學(xué)科排名




書目名稱Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligen年度引用




書目名稱Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligen年度引用學(xué)科排名




書目名稱Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligen讀者反饋




書目名稱Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligen讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:13:54 | 只看該作者
Modeling of Explainable Artificial Intelligence with Correlation-Based Feature Selection Approach fe of fuzzy k-nearest neighbor classifier (FKNN), and the parameter tuning of this model is performed utilizing black widow optimization (BWO) approach. The experimental result analysis of the XAICFS-BDA technique is carried out using distinct benchmark biomedical dataset. Extensive comparative analy
板凳
發(fā)表于 2025-3-22 01:11:52 | 只看該作者
Explainable Artificial Intelligence with Metaheuristic Feature Selection Technique for Biomedical Dork (DNN) is exploited for medical data classification, and its efficiency can be further improved by the use of Nadam-optimizer-based hyperparameter tuning process. The performance validation of the XAIMFS-BMC technique is tested using distinct benchmark medical dataset, and the results are inspect
地板
發(fā)表于 2025-3-22 07:43:16 | 只看該作者
Design of Multimodal Fusion-Based Deep Learning Approach for COVID-19 Diagnosis Using Chest X-Ray Iused together to increase the classification performance. Finally, multilayer perceptron (MLP) is applied to detect and classify the input images into distinct class labels. In order to examine the effective classifier outcome of the MMFBDL model, a comprehensive set of simulations takes place and t
5#
發(fā)表于 2025-3-22 10:54:22 | 只看該作者
6#
發(fā)表于 2025-3-22 15:00:55 | 只看該作者
Rethinking the Transfer Learning Architecture for Respiratory Diseases and COVID-19 Diagnosis,and normal occurrences was used to diagnose coronavirus disease automatically. A dataset has been used in this experiment comprising 76 image samples showing verified COVID-19 illness, 2786 images showing bacterial pneumonia, 1504 images showing viral pneumonia, and 1583 images showing normal circum
7#
發(fā)表于 2025-3-22 21:07:07 | 只看該作者
Arithmetic Optimization Algorithm with Explainable Artificial Intelligence Technique for Biomedicalignals, where the AOA can be utilized for effectively selecting the weight and bias values of the SVM model. For ensuring the enhanced performance of the AOA-XAI approach, a series of simulations can be implemented against the benchmark dataset. The experimental results reported the supremacy of the
8#
發(fā)表于 2025-3-22 23:10:56 | 只看該作者
Unkonventionell gegen Konventionenemble learning model. Moreover, the parameter tuning of the BWELM model takes place by the use of chaotic starling particle swarm optimization (CSPSO), where the inertia weight and acceleration coefficient of the PSO algorithm are modified via logistic chaotic map. The application of CSPSO algorithm
9#
發(fā)表于 2025-3-23 01:29:20 | 只看該作者
Unkonventionell gegen Konventionene of fuzzy k-nearest neighbor classifier (FKNN), and the parameter tuning of this model is performed utilizing black widow optimization (BWO) approach. The experimental result analysis of the XAICFS-BDA technique is carried out using distinct benchmark biomedical dataset. Extensive comparative analy
10#
發(fā)表于 2025-3-23 08:54:57 | 只看該作者
Deepak Vaid,Sundance Bilson-Thompsonork (DNN) is exploited for medical data classification, and its efficiency can be further improved by the use of Nadam-optimizer-based hyperparameter tuning process. The performance validation of the XAIMFS-BMC technique is tested using distinct benchmark medical dataset, and the results are inspect
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
聊城市| 彩票| 濮阳县| 潜山县| 玉环县| 南部县| 兴和县| 出国| 库车县| 大同市| 崇礼县| 邵武市| 石楼县| 芜湖县| 如皋市| 前郭尔| 玉门市| 大渡口区| 兖州市| 大埔区| 汉寿县| 定州市| 保康县| 科技| 南昌市| 三台县| 呼图壁县| 周口市| 天津市| 洛宁县| 城口县| 札达县| 岫岩| 绥化市| 浦江县| 邹城市| 辉南县| 和林格尔县| 梨树县| 泾源县| 基隆市|