找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biomechanical Modelling at the Molecular, Cellular and Tissue Levels; Gerhard A. Holzapfel,Ray W. Ogden Book 2009 CISM Udine 2009 biomecha

[復(fù)制鏈接]
樓主: 密度
11#
發(fā)表于 2025-3-23 09:52:01 | 只看該作者
Need for a Continuum Biochemomechanical Theory of Soft Tissue and Cellular Growth and Remodeling,onse to continually changing hemodynamic and metabolic conditions’. I submit that mathematical models can help us to understand better the complex adaptations (and maladaptations) manifested by vascular tissues and cells, for such models can build intuition via simulations that contrast the effects
12#
發(fā)表于 2025-3-23 16:35:44 | 只看該作者
Multi-scale Modelling of the Heart,hich access systems of ODEs representing the cellular processes underlying the cardiac action potential. Navier-Stokes equations are solved for coronary blood flow in a system of branching blood vessels embedded in the deforming myocardium and the delivery of oxygen and metabolites is coupled to the
13#
發(fā)表于 2025-3-23 21:28:55 | 只看該作者
14#
發(fā)表于 2025-3-24 01:40:30 | 只看該作者
Kooperation und Kompetition im Videospielechanical environment, and that there is a pressing need for mathematical models to integrate information from the rapidly expanding data bases on such adaptations. Although both the biological motivation and the theoretical framework presented herein apply generally to soft tissues and cells, ideas
15#
發(fā)表于 2025-3-24 04:39:22 | 只看該作者
16#
發(fā)表于 2025-3-24 09:45:11 | 只看該作者
Kooperation und Kompetition im Videospielchanical properties of soft biological tissue can be analyzed by comparing theory with experimental data. Of particular concern will be the elastic properties of arterial wall tissue. The results of mechanical testing are important for the characterization of the material properties through appropri
17#
發(fā)表于 2025-3-24 14:42:42 | 只看該作者
18#
發(fā)表于 2025-3-24 15:16:11 | 只看該作者
https://doi.org/10.1007/978-3-211-95875-9biomechanical modeling; cellular growth; mechanics; modeling; simulation; tissue; tissue engineering
19#
發(fā)表于 2025-3-24 22:18:32 | 只看該作者
20#
發(fā)表于 2025-3-25 02:28:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西乌珠穆沁旗| 南投市| 吴江市| 宝兴县| 横山县| 余庆县| 大名县| 新乡县| 张家界市| 林周县| 饶平县| 休宁县| 呼伦贝尔市| 湘阴县| 绥化市| 宜阳县| 阳原县| 姚安县| 仁寿县| 博客| 贵溪市| 喀喇| 开化县| 榆中县| 邳州市| 永寿县| 辽阳市| 曲水县| 永靖县| 全椒县| 沙坪坝区| 漾濞| 沂水县| 黎平县| 宁蒗| 龙江县| 普宁市| 红原县| 临夏县| 永康市| 隆昌县|