找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biological Transformation; Reimund Neugebauer Book 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020 Digital transformation.

[復(fù)制鏈接]
樓主: Ingrown-Toenail
21#
發(fā)表于 2025-3-25 04:23:15 | 只看該作者
22#
發(fā)表于 2025-3-25 11:07:49 | 只看該作者
23#
發(fā)表于 2025-3-25 13:04:16 | 只看該作者
24#
發(fā)表于 2025-3-25 17:34:23 | 只看該作者
Reconciliation of Object Interaction ModelsThis paper presents Reconciliation+, a tool-supported method which identifies overlaps between models of different object interactions expressed as UML sequence and/or collaboration diagrams, checks whether the overlapping messages of these models satisfy specific consistency rules, and guides developers in handling any inconsistencies detected.
25#
發(fā)表于 2025-3-25 22:58:49 | 只看該作者
26#
發(fā)表于 2025-3-26 04:01:49 | 只看該作者
Polynomial Differences in the Primes,We establish, utilizing the Hardy-Littlewood circle method, an asymptotic formula for the number of pairs of primes whose differences lie in the image of a fixed polynomial. We also include a generalization of this result where differences are replaced with any integer linear combination of two primes.
27#
發(fā)表于 2025-3-26 08:10:51 | 只看該作者
Morally Justifying Oncofertility ResearchIs research aimed at preserving the fertility of cancer patients morally justified? A satisfying answer to this question is missing from the literature on oncofertility. Rather than providing an answer, which is impossible to do in a short space, this chapter explains what it would take to provide such justification.
28#
發(fā)表于 2025-3-26 11:08:33 | 只看該作者
The Probability That Random Positive Integers Are 3-Wise Relatively Prime,A list of positive integers are 3-wise relatively prime if every three of them are relatively prime. In this note we consider the problem of finding the probability that . positive integers are 3-wise relatively prime and give an exact formula for this probablility.
29#
發(fā)表于 2025-3-26 14:16:31 | 只看該作者
30#
發(fā)表于 2025-3-26 18:45:09 | 只看該作者
,A Short Proof of Kneser’s Addition Theorem for Abelian Groups,Martin Kneser proved the following addition theorem for every abelian group .. If .,?.???. are finite and nonempty, then . where .. Here we give a short proof of this based on a simple intersection union argument.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商洛市| 句容市| 台前县| 蚌埠市| 武平县| 新源县| 三河市| 新宁县| 湘西| 神池县| 屯留县| 临汾市| 吐鲁番市| 仙居县| 什邡市| 肥东县| 红安县| 秦皇岛市| 洱源县| 桑日县| 安溪县| 连平县| 遵化市| 安阳县| 龙陵县| 木兰县| 湖南省| 嘉峪关市| 农安县| 广宁县| 商南县| 大姚县| SHOW| 长乐市| 雷州市| 佛冈县| 盱眙县| 淳安县| 嘉定区| 抚松县| 油尖旺区|